
NAVAL POSTGRADUATE SCHOOL
Monterey, California

AD-A267 309

THESIS

DESIGN OF A DECENTRALIZED ASYNCHRONOUS
MEMBERSHIP PROTOCOL AND AN IMPLEMENTATION

OF ITS COMMUNICATIONS LAYER

by

Fernando Jorge Pires

March 1993

Thesis Advisor: Shridhar B. Shukla

Approved for public release; distribution is unlimited.

,> 4 93-16901

U NCLASSL-Lfr1D
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION UNCLASSIFIED lb RESTRICTIVE MARKINGS

2a SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
b22b. DECLASSIFICATION/OWNGRADING SCHEDULE Approved for public release;distribution is unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
'IT

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Naval Postgraduate School Code 32 Naval Postgraduate School

6c. ADDRESS (City. State. and ZIP Code) 7b, ADDRESS (City. State, and ZIP Coae)

Monterey, CA 93943-5000 Monterey, CA 93943-5000

8a. NAME OF FUNDING/SPONSORING Sb OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO ACCESSION NO

11. TITLE (Include Secunty Classification) DESIGN OF A DECENTRALIZED ASYNCHRONOUS MEMBERSHIP PRO-
TOCOL AND IMPLEMENTION OF ITS COMMUNICATIONS LAYER
12. PERSONAL AUTHOR(S) Fernando Jorge Pires

jIp. TYP O.f.REP.ORT 13b. TIME COVERED i14 DATE OF REPORT (Year. Month. Day) 115 PAGE COUNT

Master s Tnesis FROM 06/92 TO 03/93 March 1993 155
16. SUPPLEMENTARY NOTATFOhe views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the United States Government.

17 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block nL~mt.er)
FIELD GROUP SUB-GROUP ,Agrement, Asynchronous, Commit, Decentralized, Failure, Fault-tolerance,Group membership, Join, Logical ring, Reliable multicast, Token

19. ABSTRACT (Continue on reverse it necessary and identify by block number)

For development of group-oriented distributed applications, a group membership protocol provides the mecha-
nisms to dynamically adapt to changes in the membership, ensuring consistent views among all members of the group.
This is achieved, by executing a distributed script, that implements a protocol, at each member to maintain a sequence
of identical views, in spite of continuous changes, either voluntary or due to failure, to the membership. In asynchro-
nous distributed environments, the protocol has to operate over a network that does not bound delivery times. This
thesis presents a decentralized membership protocol, designed to operate on asynchronous environments, that orga-
nizes the members in a logical ring. The protocol assumes reliable FIFO channels, that fully interconnect all members
to be available. These assumptions are later relaxed to adapt the protocol to real-world environments. Reconfigura-
tions of the group are carried out using a two-phase algorithm. An agreement phase makes the change known to all
operational members, and a commit phase integrates the change at all members, in the correct order. The protocol
supports failures of one or more members, either successive or simultaneous. voluntary departures, and joining of new
members. In the case of simulataneous events, the protocol ensures that they are incorporated one at a time, and fol-
20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATIONL UNCLASSIFIED/UNLIMITED [] SAME AS RPT. [] DTIC USERS UNCLASSIFIED
22a. NAME OF RESPO .NVI 22b TELEPHONE ,ncude Area Code) .22 (SYMBOLShrtrtar. •nu~ka (408) 656-2764T

00 FORM 1473, 84 MAR 83 APR edition may be used untl exhausted SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

lowing the same sequence, at all members. All actions are token-based and the protocol ensures that no tokens are lost
or duplicated regardless of changes in the membership during any phase of the protocol. The main feature of this pro-
tocol is that, by ordering the group in a logical ring, and by decentralizing the responsibility of the monitoring and re-
configuration processes, the need for a dedicated manager is eliminated. Execution of the protocol is symmetric relative
to the type of change. and to the responsibility distribution among members.The complete specification of the protocol
is presented, along with a correctness proof, and performance analysis. A full implementation design is presented and
the actual implementation (coding) issues for a Unix-based environment are discussed. Since there are no other known
full implementations of a decentralized protocol, comparisons are made with a centralized protocol, to determine mef-
sage cost, and scalability characteristics.

.1o0

DTIC QUALITY L• J"

SECURITY CLASSIFICATION OF THIS PA•GE

UNCLASSIFIED

-i

Approved for public release; distribution is unlimited

DESIGN OF A DECENTRALIZED ASYNCHRONOUS
GROUP MEMBERSHIP PROTOCOL

AND AN IMPLEMENTATION OF ITS COMMUNICA TIONS LA YER

by
Fernando Jorge Pires

Lieutenant, Portuguese Navy
B.S.E.E., Escola Naval, Lisbon, Portugal, 1986

Submitted in partial fulfillment of the
requirements for the degrees of

ELECTRICAL ENGINEER
and

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
March 1993

Author: I -z-' "
Fernando Jorge Pires

Approved By: ______________.__'___..__--
Shridhar B. Shukla . Thesis Advisor

Amr Zal , Second Reader

Department of Electrical and Computer Engineering

Richard'S. El.ster.
Dean of Instruction

iii

ABSTRACT

For development of group-oriented distributed applications, a group membership protocol

provides the mechanisms to dynamically adapt to changes in the membership, ensuring consistent

views among all members of the group. This is achieved, by executing a distributed script that

implements a protocol at each member to maintain a sequence of identical views, in spite of

continuous changes, either voluntary or due to failure, to the membership. In asynchronous

distributed environments, the protocol has to operate over a network that does not bound delivery

times. This thesis presents a decentralized membership protocol, designed to operate on

asynchronous environments, that organizes the members in a logical ring. The protocol assumes

reliable FIFO channels, that fully interconnect all members to be available. These assumptions are

later relaxed to adapt the protocol to real-world environments. Reconfigurations of the group are

carried out using a two-phase algorithm. An agreement phase makes the change known to all

operational members, and a commit phase integrates the change at all members, in the correct

order. The protocol supports failures of one or more members, either successive or simultaneous.

voluntary departures, and joining of new members. In the case of simulataneous events, the

protocol ensures that they are incorporated one at a time, and following the same sequence, at all

members. All actions are token-based and the protocol ensures that no tokens are lost or duplicated

regardless of changes in the membership during any phase of the protocol. The main feature of this

protocol is that, by ordering the group in a logical ring, and by decentralizing the responsibility of

the monitoring and reconfiguration processes, the need for a dedicated manager is eliminated.

Execution of the protocol is symmetric relative to the type of change. and to the responsibility

distribution among members.The complete specification of the protocol is presented, along with a

correctness proof and performance analysis. A full implementation design is presented and the

actual implementation (coding) issues for a Unix-based environment are discussed. Since there are

no other known full implementations of a decentralized protocol, comparisons are made with a

centralized protocol, to determine message cost, and scalability characteristics.

iv

TABLE OF CONTENTS

I N TRO D U CTIO N ... I

A . BA CK G RO U ND .. I

B . SO LUTIO N S .. 2

C . SCO PE AND O RG ANIZATIO N OF THE TH ESIS ... 4

II. A DECENTRALIZED GROUP MEMBERSHIP PROTOCOL 6

A. GROUP MEMBERSHIP PROTOCOL OVERVIEW ... 6

1. A ssum ptions .. 6

2. O verview7

a. Processing of Individual Changes .. 9

3. Definitions .. 10

a. G roup M em bership Problem .. 1 .

b. Logical Ring ... A

c. Ring Relation (RR) ... 11

d. Ring Property ... 12

e. Logical M arker .. 12

f. Ring H ost .. 12

g . R a n k .. 12

h. M onitoring M em ber ... 12

i. T o k e n s 12

V

j. Local Inform ation ... 13

k. Neighbor and Host Com putation .. 14

B . THE G RO UP M EM BERSHIP PROTO CO L ... 16

1. Status Change Detection .. 16

2. The Agreem ent Phase ... 19

3. The Com m it Phase .. 21

4. Ensuring An Identical Sequence Of Com m its ... 23

C . SAFETY AND LIV ENESS ... 24

III. PROTO CO L D ESIG N ... 28

A . PROTO CO L SOFTW ARE D ESIG N ... 28

B . PRO CESS SPECIFICA TIO N ... 29

1. Fifo Channel Layer ... 30

a. Front Sub-process ... 30

b. Back Sub-process ... 33

2. M onitor Process ... 35

a. Status M onitor .. 37

b. Status Reporter ... 37

c. Tim er ... 38

3. Join Processor ... 38

4. Integrate M em ber .. 40

5. Agreem ent Processor ... 41

vi

6. Com m it Processor .. 43

7. Group View M anager .. 45

8. Status Table M anager .. 46

9. Token Pool M anager ... 47

C. DATA STRUCTURE DEFINITIONS AND MESSAGE FORMATS 48

1. D ata structure definition ... 48

a. G roup V iew .. 48

b. Status Table .. 50

c. Token Pool ... 50

2. M essage form ats ... 51

a. Token m essage ... 54

b. Token Pooi m essage ... 55

c. Initial Token Pool ... 56

d. Token Ack m essage .. 57

e. Delete Token m essage .. 57

f. Initiate Token m essage ... 58

g. Status Table and Initial Status Table m essages 58

h. G roup V iew and Initial G roup V iew m essages 59

i. Initial Param eters m essage ... 60

j. Join Request, Status Query and Status Report messages 61

k. Update Status and Update View m essages .. 62

vii

1. Send Initial Parameters message .. 63

m. View Request, Status Table Request and Token Pool Request messages ...63

n. Start Timer and Timeout messages ... 63

IV. IMPLEMENTATION ON UNIX-BASED MACHINES .. 65

A. COMMUNICATIONS LAYER .. 65

1. N etw ork A ccess Protocol ... 65

a. Inter-member communications ... 67

b. Intra-member communications ... 68

2. Socket Access Abstraction ... 68

a. Unix-domain socket access ... 69

b. Internet-domain socket access ... 71

c. M ulti-port socket access ... 72

B. APPLICATION INTERFACE AND HIERARCHICAL STRUCTURE 73

V. PERFORMANCE AND EXTENSION ANALYSIS ... 76

A . M P O V E R A L A N .. 76

B . M P O V ER A W A N ... 78

C. STRING OF MEMBERSHIP CHANGES ... 80

VI. CONCLUSIONS AND RECOMENDATIONS ... 81

L IST O F R EFE R E N C ES .. 83

A P P E N D IX ... 8 5

IN IT IA L D IST R IB U TIO N L IST .. 140

viii

LiST OF TABLES

Table 1: INTERPRETATION OF STp,(p,) ... 14

Table 2: PROTOCOL PROCESSES .. 29

T able 3 : M E S SA G E L IST 53

T able 4 : T O K E N T Y PES ... 55

T able 5 : ST A T U S T Y PE S ... 59

Table 6: COMPARISON OF SOCKETS AND TLI (ADAPTED FROM [20]) 66

Table 7: COMPARISON OF FEATURES FOR UDP AND TCP (FROM [20]) 67

Table 8: MESSAGE COST COMPARISON ... 77

ix

LIST OF FIGURES

F igure I : A L og icai R ing 8

Figure 2 : MN Interaction With the External World ... 16

Figwue 3: Monitoring and Agreement Initiation Actions .. 17

Figure 4: Reporting of the Member Status 17

Figure 5 : Processing of a Join Request Message/Token ... 18

Figure 6 : Processing of A greem ent Tokens .. 20

Figure 7 : Generate/Receive and Process a Commit Token ... 21

Figure 8: Actions for Committing a Change .. 22

Figure 9: Membership Protocol Interfaces ... 28

Figure 10: Fifo Channel - Process Dependencies .. 31

Figure 11: Fifo C hannel - Front Process ... 332

Figure 12 : Fifo C hannel - B ack Process 35

Figure 13 : Monitor Process - Internal Structure and Dependencies 36

Figure 14 : Join Pr'ocessor - Process Dependencies .. 39

Figure 15 : Integrate Member - Process Dependencies .. 41

Figure 16: Agreement Processor - Process Dependencies ... 42

Figure 17 : Commit Processor - Process Dependencies .. 44

Figure 18 : Group View Manager- Process Dependencies ... 45

Figure 19 : Status Table Manager- Process Dependencies ... 46

X

Figure 20: Token Pool Manager- Process Dependencies .. 47

Figure 21: G roup V iew D ata Structure .. 49

F igure 22 Status T able Structure .. 50

F igure 23 T oken Pool Structure ... 5 1

Figure 24 : Internal M essage Form at ... 52

Figure 25 External Message Format 52

Figure 26 : Elem ent N am e Structure ... 54

Figure 27 : Token M essage Form at ... 55

Figure 28: Token Pool Message External Format ... 56

Figure 29: Token Pool Message Internal Format 56

Figure 30: Initial Token Pool Message Format I 57

Figure 31 : T oken A ck M essage Form at ... 5

Figure 32 : D elete Token M essage Form at .. 58

Figure 33 : Initiate Token M essage Form at ... 58

Figure 34: Status Table and Initial Status Table Message Format 59

Figure 35 : Group View and Initial Group View Message Format 60

Figure 36 : Initial Parameters Message Internal Format .. 61

Figure 37 : Join Request, Status Query and Status Report Message Formats 62

Figure 38 : Update Status and Update View Message Format .. 62

Figure 39: Send Initial Parameters Message Format ... 63

Figure 40: View Request, Status Table Request and Token Pool Request Message Format 63

xi

Figure 41: Start Timer and Timeout Message Format .. 64

Figure 42: Sequence of Calls to Establish a Working Unix-domain Socket 69

Figure 43: Sequence of Calls to Connect to a Remote Unix Socket 70

Figure 44: Sequence of Calls to Establish a Working Internet Socket 71

Figure 45: Sequence of Calls to Connect to a Remote Internet Socket 72

Figure 46: Sequence of Actions to Create a Multi-port Facility 73

Figure 47: Hierarchical Program Execution Structure .. 74

Figure 48: M P O ver a Single LAN .. 77

Figure 49 : M P O ver a W AN .. 79

xi

ACKNOWLEDGMENT

I would like to thank the Portuguese Navy for giving me the opportunity to attend the program

of M.S.E.E. and additionally the program of Electrical Engineer at the Naval Postgraduate School.

Although this thesis bears my name, there are a number of others whose contributions I regard

as invaluable for its completion. I am specially grateful to my advisor Prof. Shridhar B. Shukla for

his constant guidance, availability and open cooperation, in all stages of the work. I would like to

thank David Pezdirtz for his cooperation in the coding process.

Lastly, I would like to thank my wife Julieta, for her support and for coping with the hardship

of a long separation. To her, I dedicate this thesis.

xiii

1. INTRODUCTION

A. BACKGROUND

Distributed computing systems have become prevalent in a wide variety of application fields

such as distributed database contexts, real-time settings, and distributed control applications [5]. In

contemporary applications, reliability is a major issue, even in non-distributed systems where

correctness, fault tolerance, self-management, real-time responsiveness, protection and security are

of central concern. Distributed systems add one more layer of complexity, caused by the dispersion

of the computation that gives rise to inter-component communications. In these systems, one has

to be concerned not only with the behavior of isolated components, but also with the joint behavior

of a plural set of components working in a common application context (4].

Of all characteristics of a robust distributed application, fault tolerance is arguably the hardest

to implement, and the most desirable for critical applications. In distributed systems, fault tolerance

is achieved by replicating information over several processing elements, and providing

mechanisms to maintain global consistency in the presence of disturbances [2]. Thus components

of a fault-tolerant distributed system depend on reliable communications over the available

physical networks. Incorporating such capabilities in each application is a complex task, and

penalizes the design of correct and efficient programs. It is then desirable to have high-level

communication primitives that facilitate the writing of critical distributed programs. These

primitives will allow the abstraction of the network, such that the application does not have to be

concerned with inter-process communication management. They also provide the group, as a

whole, with self-recovery capabilities from disturbances [14]. Such primitives make an inherently

unreliable communication mechanism reliable.

Group-oriented distributed computation, based on reliable communication primitives, has

been shown to be an excellent paradigm for developing such robust distributed applications [4[112].

This paradigm relies on groups of entities that cooperate to carry out the computation. A group may

S.. -- • • m. *mm m mummlm mmlmmm mmmu mm m n i~ m1

correspond to a set of processes that must behave consistently to provide a service, or a set of

processes in which each must determine its function based on which other processes are

operational [11]. Therefore, information about the membership of a group is required at all

members, in spite of the changes that may occur when members fail or leave the group, and when

they recover or .jin the group [l].Some form of consensus on group membership is necessary.

Without it, a member that respects its specification may nonetheless behave inconsistently with

respect to another member that has simply seen different group members [5].

A mechanism that ensures consistent views of the membership of a group is basic to the

construction of applications that follow this paradigm [I]. The main features of the process group

approach arefailtre atomicitv for multicast (all-or-nothing policy in multicast delivery even in the

presence of failures), and membership atomnicitr for failures and joins to a group (group

membership changes are totally ordered and synchronized within all members) [3][9]. In addition

there is the need to ensure that the application consists of safe and live algorithms [5].

These characteristics are provided by reliable primitives, which lead to the requirement that

all members of a group incorporate the changes in membership in the same sequence and in a

globally consistent way.

The Group Membership Problem (GMP) is the problem of agreeing on the membership of the

group, and consistently sharing that information among all members of a given group.

B. SOLUTIONS

Solving the GMP depends critically on whether it is being considered in a svnchronon. or

asynchronous distributed system.

In synchronous systems, tight synchronization among the clocks of the interacting processes

(thus relying on a global time) and/or known upper bounds on message delivery times, are used as

foundations for the protocol mechanisms. It is then possible to process changes in a serialized and

ordered manner, by completely integrating each change one at a time, and following the same

sequence, at all members. Application messages wait until changes to membership are completed,

and membership changes wait until all pending messages are sent [1].

2

In asynchronous environments, there is no relationship among clocks of the interacting

processes and message delivery times are unbounded. An important consequence is that crashes

are indistinguishable from communication delays or slow members. Rather than detecting and

ascertaining failures, these can only be perceived. It is necessary that members perceived to have

failed be removed from the group. In asynchronous systems, this is the only alternative since it has

been proved that it is impossible to reach consensus on a failure [13]. The basic function of a

Membership Protocol (MP) in such an environment is to ensure that all operational members

commit perceived changes to their local views consistently. The consistent commit entails

agreement about the change perceived.

Several MPs have been proposed for asynchronous systems.

In [15], failure/recovery detection and notification are achieved using successive message

rounds. The number of messages required scales nonlinearly with the group size, and correct

recovery requires a priori knowledge of the potential members.

Several MWs are proposed in [16] based on total ordering of messages. Such ordering has a

high overhead cost and assumes a fault-tolerant, reliable broadcast communications protocol.

In [17], reliable broadcasts are supported by.rotating a membership list (token-list) among

operational members. When a member holding the token list fails, a reformation phase is entered

which guarantees that a single new token-list is generated and committed to by all members.

During this phase, normal message traffic is suspended and handling of changes needs an extension

to the protocol.

In [7], a fault-tolerant extension to the Unix operating system is presented. It uses a three-way

atomic message transmission to coordinate the recovery from single failures. It implements a

software-based recovery process for arbitrary programs, and is specially suited for transaction-

based applications, were real-time operation is not critical.

A two-phase site-view management protocol to support higher level fault-tolerant

communication primitives is presented in [18]. Its drawback of blocking during continuous failures

and recoveries is removed in the formal solution proposed in [5]. Assuming a completely

connected network of reliable FIFO channels and fail-stop[2] behavior of member processes, this

3

MIP uses a two-phase algorithm for the basic membership update, and a three-phase algorithm

when the reconfiguration manager itself fails. This is a centralized protocol, since a single manager

process has the responsibility to carry out agreement and commit phases. In the case of the

manager's failure, election of a new manager with a consistent membership proposal must avoid

invisible commits.

The MIP presented in this thesis is a decentralized, symmetric protocol, based on a fully

connected network of reliable FIFO channels, for asynchronous environments. As in [5], all

communication, resulting from communication primitives, between members of a group is

assumed to carry a view number. It is required that each increment of the view number be

associated with successive views that differ by only one. This protocol guarantees that a given view

number is eventually associated with the same membership at all operational members.

The proposed MP eliminates the need for centralizing the responsibility of ensuring

consistency of view changes as in [5], by maintaining the group view ordered as a logical ring at

each member. Each member perceives the departure (encompassing both failures and voluntary

departures) of a neighboring member. Joining members enter on one side of a virtual marker whose

position is maintained by all-members.

Reconfiguration of the ring (i.e., updating the membership of the group) is carried out in two

rounds, namely agreement and commit. Agreement and commit actions are achieved using tokens

circulated along the logical ring. The protocol is able to regenerate lost tokens and ignore duplicate

ones generated during its operation.

The fully-decentralized operation of this protocol sets it apart from all previous work on this

field. The concept of a logical ring was also used in [71 and [8]. However, it was used mainly for

the purpose of status monitoring. In our case, it constitutes the basis of the entire protocol, and no

additional mechanisms are used, in contrast with those protocols.

C. SCOPE AND ORGANIZATION OF THE THESIS

In this thesis, a decentralized asynchronous membership protocol is presented. This protocol

was originally presented in [6] and (101. The present thesis elaborates and presents a revised

4

version of the basic work, along with a full implementation design, and a discussion of the actual

coding process for the FIFO channel Layer interface and all interactions/interfaces with the

application.

The thesis is divided in six chapters. Chapter II formally presents the proposed Group

Membership Protocol. Chapter III discusses the complete design, covering all processes and

interface. In Chapter IV, the implementation details, describing the interface with the operating

system and the coding issues, are presented. The performance and scalabilty of this protocol are

analyzed in Chapter V. Chapter VI discusses possible extensions of the protocol and proposes

future lines of work in this area. In the Appendix, listings of the developed programs are presented.

5

II. A DECENTRALIZED GROUP MEMBERSHIP PROTOCOL

In this chapter, a decentralized group membership protocol is described, and proved correct.

The original development of this protocol was presented in [6]. This chapter presents the result of

successive revisions and refinements motivated by the implementation effort discussed in the next

chapter.

A. GROUP MEMBERSHIP PROTOCOL OVERVIEW

1. Assumptions

The proposed Membership Protocol (MP) makes the following assumptions. A fully-

connected network (implying no network partition) of reliable (implying that a message is never

lost by the network, except in the presence of failure) FIFO (implying that the order of message

delivery between a pair of processes is preserved) communication channels connecting operational

members is assumed. All failures are assumed to be crash or fail-stop [1]. This implies that a

message sent will not be delivered only because of the receiver's failure. However, it may be

arbitrarily delayed. Note that the implementation presented in the following chapter will allow the

relaxing of the reliability and FIFO characteristics of the communication channels, but as far as the

discussed protocol is concerned those conditions will be assured, by providing the necessary

mechanisms within the implementation.

Continuous changes to the membership are allowed; however, the changes are committed

one at a time, and with a specific order, common to all members of the group.

A member gets added when a join is processed and gets deleted when a departure is

perceived.

A group name is assumed to be public to those elements that may wish to become

members by joining the group. It is assumed that there is a mechanism that allows the prospective

member to search the appropriate domain to determine the address of a member currently running

on some site. This address is used to send a join request which identifies the sender with an unique

address.

6

The protocol maintains three main data structures at each member, vi:., the membership

list (group view), status table and token pool (all described in the following sections). Since these

are read/written by more than one component of the protocol, it is assumed that mutual exclusion

is provided for their access in the protocol implementation.

2. Overview

The proposed MP guarantees that the view changes and relative sequence at each

operational member are identical. Using a view number in all group-related communication

guarantees that reliable communication primitives can be built.

The principle feature of this MP is that there is no central element responsible to either

detect a change in membership status or to guarantee consistency of a commit action on the

membership view. Both are achieved in a distributed manner using a logical ring which is simply

a conceptual circular ordering of the members.

A logical ring has no relation with the physical location of the members. Given such a

ring and a direction of traversing (arbitrarily, clockwise is selected), each member periodically

queries its anti-clockwise neighbor for its status. The neighbor then responds with a status message

It, in its turn, sends a status query to its own anti-clockwise neighbor. Thus, every member monitor

one and only one other member and is itself monitored by a third member.

As an example let us consider a group where there are six membe.-s p, to p,, and a logical

ring can be configured in such a way that Po is the anti-clockwise neighbor of p, and clockwise

neighbor of p5, p, is the anti-clockwise neighbor of P2 and clockwise neighbor of p1,, and so on.

Member p, sends a status query to po and p) responds with a status report back to p,. The numbering

of the members Po to p5 is determined by the order of joining to the group, as discussed later on.

This process is illustrated in Figure 1.

Initially, the ring configuration is known to all the members (typically the ring will start

with one single element, and other elements join in some arbitrary order). As the membership

changes, the ring configuration changes. The MP treats the cases of a member leaving the group in

the same manner as a member joining the group (failures amount to a member leaving involuntarily

7

status query

PS status report P

direction at
token circulation

Figure 1 A Logical Ring

and recoveries amount to a member joining as a new one). The protocol maintains appropriate

information at operational members to determine whom each member must monitor. When a

member departs voluntarily, it simply stops responding to the status query from its monitor. If a

failure occurs, it is unable to respond to its monitor, or its response is delayed beyond some

reasonable interval of time. In either case, if a monitor does not receive a status message within a

certain time interval after sending a query, the monitored member is perceived to have left the

group. It is desirable that a member who is alive but has been perceived as departed by its monitor,

perceive its own departure from the group. This will allow for the member to gracefully cease its

existence, and possibly to later rejoin.

A sequence of actions to ensure that all the operational members consistently commit to

this change is then invoked. When a member recovers or wishes to join anew, it sends a join request

to the first group member it can locate in the network. This member registers the request and

8

invokes a sequence of actions, similar to that of departure processing, to ensure that consistent

integration of the incoming member takes place.

a. Processing of Individual Changes

There are two phases in the protocol to process a join or a departure, vi:., the

agreement phase and the commit phase. These phases are token-based and guarantee that each

token is processed exactly once by each member and is never lost. Processing of individual view

changes is described below. Exact description of the actions taken in each phase, for the general

case of arbitrary change event sequences, is given in the next section.

Departure Processing:

Once a member perceives the departure of its monitored member because it does not

receive a status message in response to its query for a predetermined time interval, it initiates the

agreement phase by sending an agreement token to its clockwise neighbor. It also starts monitoring

the anti-clockwise neighbor of the member perceived to have departed.

The agreement token is passed around the ring in the clockwise direction by each

member, who passes it along to its own clockwise neighbor. When this token circulates back to the

agreement initiator, it has gone completely around the ring once and all the operational members

have information indicating that the group has reached an agreement on the perceived departure.

The agreement initiator then starts the commit phase by generating a commit token which is

circulated along the ring in the same manner as the agreement token. All the members receiving

this token commit the change by removing the departed member from their group view and

updating the view number.

Join Processing:

The protocol maintains a logical marker in the ring as the position between some pair

of adjacent operational members. The clockwise member of this pair is designated as the host of

the logical ring and is known to all members of the group (it is also the oldest member of the group,

9

in the sense that it was the first of the current members to join the group). A new member always

joins the group as the anti-clockwise neighbor of the host, who has the responsibility of carrying

out the agreement and commit phases for the join process. Host status is inherited by the clockwise

neighbor of the departing host, thus ensuring that the current host is the oldest member of the group,

as described earlier.

Although the host has the responsibility of establishing the join process, the joining

member does not necessarily have knowledge of which member is currently the host. A potential

member only needs to send a join request to a member it can locate. The member that receives this

join request registers it and sends it clockwise along the ring. When the request reaches the host. it

takes on the responsibility of carrying out the agreement and commit phases of the join in a manner

similar to the departure processing.

The host eventually makes the prospective member its monitored neighbor and

delivers it its local membership view, view number, and other related information.

Both departure and join processing must deal with the possibility of changes to

membership during the agreement and commit phases. These are explained using the following

definitions.

3. Definitions

Each member maintains a set containing all the operational members corresponding to its

current group view. In addition, each member maintains a status table which stores the perceived

state of all the members that are in the process of departing or joining. This table is used by a

member to reject any duplicate tokens generated due to the departure of a member in the ring in the

middle of any phase.

There is a token pool of all the tokens received by a member wherein all the tokens

transferred to the neighbor are stored until removed by the update policy described later. This pool

is maintained in the order of receipt and is used to guarantee that no token is lost upon the failure

of a member.

10

Using the current group view and the local status table, each member determines the

member it must monitor.

a. Group Membership Problem

Every member, p,, associates an integer, vn, with its current group view denoted by

.ie set GV•,,(p,), and increments it by one for every view change committed. Solution of the group

membership problem requires that [5]

Ipj E GV,, (p,) and 'in < vn. GV, (p) = GV, (p,)

An MP is safe if it guarantees the above. In the following, unless necessitated by the

context, the view number will be dropped as a subscript, since it is same across a consistent cut of

the group [5].

Note that the above condition holds for only those views that include both elements

p, and p,.

b. Logical Ring

Assume a set of members. GV = {p, p,,. P2)}. A circular sequence of these

members regardless of their physical interconnection is called a logical ring.

Members along the ring can be visited by traversing it either clockwise or anti-

clockwise. Given such a ring, a direction of traversing it, and a member, say p, a binary relation

between members gets defined by visiting each remaining member once along the ring, in order.

and returning to p, from the last member visited.

c. Ring Relation (RR)

P,
Given two members, PJPk E GV, pj -" Pk (read as p, is followed by p, with respect

to p,), if p is visited after p, when starting from p,.

Clearly, given a ring and a direction of traversal, such a relation can be defined with

respect to every member in GV. On the other hand, given the above ring relation for any t,. the

logical ring has the following ring property.

ii

d. Ring Property

Pi P Pk
7,[.Pj.PkCE GV if pj -Pj, then Pk 4 Pi pi --anp

For a logical ring, a hypothetical marker fixed along the ring is defined as follows.

e. Logical Marker

A logical marker is a fixed imaginary position between some pair of members along

the logical ring.

Its adjacent members may change due to departures and joins.

f. Ring Host

p,,, is the first operational member clockwise from the logical marker. This member

is always the oldest operational member on the group.

Every member p, keeps track of the position of the logical marker by '7. dering GV(p)

as a logical ring with respect to Pho,.

g. Rank

rankp,(p1) of any pj E GV (p1) is defined as the number of members between p,_; and

itself, with rankp,(ph0S,) defined to be zero.

This protocol ensures that rankp, (p3) = rankp, (p) .Vpp , and 1), for a given

group view. Thus the rank represents global knowledge derived eventually by all the members.

h. Monitoring Member

Every p, maintains p,,o,(i) as the last member to have queried it for its health status.

i. Tokens

The proposed MP is based on circulation of three types of tokens to achlieve

agreement and consistent commit among members. The agreement token initiated at p, for p,

perceived to have departed or joined is denoted as agreep1 (pj). Similarly, the commit token initiated

12

at pi for p, perceived to have departed or joined is denoted as commitp(p). Every token carries

information about whether it is for a departure or join.

When a join requert from p, is received by a member p, other than the host, p. creates

a join request token, joinreqp,(p,,), and passes it on to its clockwise neighbor. When the host

receives this token, it generates and circulates the agreement and commit tokens for the join. If the

host is the first member to receive the join request, it generates the agreement token directly.

It should be noted that the initiators of the agreement and commit tokens for a given

change need not to be identical, and also need not to be the same as the member that perceived the

change in the first place. For example, it is possible that P2 might perceive the failure of its neighbor

P, and, before initiating the agreement phase, might itself fail. Then its neighbor p, would first

initiate agreement processing for P2, and then initiate agreement for p, since this member is

supposed to be the new anti-clockwise neighbor but it fails to respond to queries. If p, fails before

the agreement phase is complete, then its neighbor p, would assume the responsibility for

committing the failure of P, P2 and pl.

j. Local Information

Every member p, maintains a pool of all the tokens it processes, denoted as

TokenPool(p), in the order they are processed. The purpose of maintaining this pool is to store

information related to the execution state of the protocol for on-going membership changes. This

pool is used to ensure that no tokens are lost due to the departure of the token receiver, before

completing the receiving process or immediately after receiving it and before passing it along.

Tokens from this pool are deleted carefully by following the principle that a token is

retained at a member until it is guaranteed that its use is complete. The token pool update policy is

described later on.

Every member p, maintains a local statu denoted as STp,. This table maintains

information about a member's local view of the u- . o which processing for committing

membership changes has progressed. A member has an entry in this table at p, on"y if it has been

13

perceived to have departed but not yet committed into GV(p), or if it is perceived to have joined

but is not yet committed into GV(p,). This property is crucial to the safety of the protocol.

The five possible values of ST,(p,) are: Departure Agreed, Join Agreed, Departure

Pending. Join Pending and Join Requested.

The pending status is used to delay the committing of a change at a particular member

so that the order of changes at all operational members is identical. The rank of a member is used

to determine if this status should be assigned to a member at the time the commit token for it has

been received. Interpretation of the status table entries is summarized in Table 1.

Table 1 INTERPRETATION OF STpAp 1)

Departure Agreed Agreement token for departure of p, received, but it is not
committed; pj E GVp, is true

Join Agreed same as above for a join; pi (t G VP, is true

Departure Pending Commit token for departure of p, received, but it is not
processed; pj E GVP, is true

Join Pending same as above for a join; pj (G Vp, is true

Join Requested p, has seen the join request from p, on its way to the host;
_ _ P" G v is true

The status table does not provide any additional information on the group status.

when compared with the group view and the token pool. It is totally derived from the local token

pool, and constitutes a method of fast look-up that simplifies the implementation and the

explanation of the protocol.

k. Neighbor and Host Computation

The following rules determine po,,(p,), the clockwise neighbor cwnbr(p,) and the anti-

clockwise neighbor acwnbr(p), using the ring relation on GV(p,) and the status table STp,.

Rule to determine a new p,..,:

14

Pold
At pl, Pho•t = pE GV(pi) such that Vpk (pk* pj) E GV(p,).pj->p4.

where pol is the old host.

This rule assigns the operational clockwise neighbor of p,• as the new p,,,,, and is

invoked to compute the new host every time a member commits the departure of its p,,,.

It should be noted that selection of the new host is determined only by the current

GV(p,) and not along with STp,. Since all group views are consistent, this ensures that all the

members arrive at the same Ph,*,. ST,. reflects local knowledge and is not necessarily consistent

along a cut of the group, so it should not be used in global decisions.

This rule is applied whenever there is a removal of a member committed. It should be

noted that the ring relation with respect to Pold used here is defined on the current view, because the

rule is applied at the time of a commit.

Rule to determine cwnbr(p,):

The clockwise neighbor is always th• member from whom the status query is

received, i.e., cwnbr (pi) = Pmon (i).

This rule is applied whenever a status query comes from a member other than the

current cwnbr.

Rule to determine acwnbr(p,):

P1
acwnbr(pi) = p1 E GV(pi) suchthat Vpk (pk*pj)) E GV(pi).p --P j and ,(t STP.,

This rule is applied to determine the anti-clockwise neighbor. The anti-clockwise

neighbor is always obtained from the current group view.

15

B. THE GROUP MEMBERSHIP PROTOCOL

In Figure 2, the interaction of the MP with the application and the network is shown. The

Application

membership and group join andview number Fview requests

Group
Membership Protocol

Sto and from

other members
SNetwork

(reliable FIFO channels)

Figure 2 NTi Interaction With the External World

network is abstracted as a set of reliable FIFO channels. The application process generates a

request to join a particular group and receives the current view of the group.

In the case of a join to an existing group, the MN has the ability to obtain the address of a site

(or list of sites) where a member of the requested group is expected to be running. If no site with a

running member of that group is found, the MN starts a new group.

Generation of a join request results in an instance of the MP being started on the application

site. This instance acquires the membership of the desired group and maintains the view

information until the member departs from the group. The status change detection, agreement

phase, and commit phase are described below.

1. Status Change Detection

Figure 3 shows the algorithm each member executes to monitor is anti-clockwise

neighbor and initiate an agreement token if a departure is detected. The Monitor process is

16

Monitor process at p,
I while (true)
2 send status query to acwnbr(p,)
3 start timer for T 1/* local timeout interval */
4 wait for incoming message
5 if (timeout)
6 send initiate agreement to ProcessAgreeTkn for the departed member
7 block until ProcessAgreeTkn acknowledges end of processing
8 else if (status report received)
9 wait for T1
10 end
11 end

end Monitor

Figure 3 Monitoring and Agreement Initiation Actions

triggered by the local clock. The clockwise and anti-clockwise neighbors are computed according

to the rule given earlier in every iteration of the main loop.

If a status message is not received, it shuts off communication with the member perceived

to have departed (to prevent receipt of an excessively delayed message), updates the local status

table, generates and adds an agreement token to the local token pool, and sends it to its clockwise

neighbor.

If the clockwise neighbor turns out to have already departed, the status reporting

instrument shown in Figure 4 ensures that the token will get sent to the next clockwise operational

ReportStatus process at p,
I p.,o, = querying member
2 send status to p,.,,
3 if (previous querying member * p.,,,)
4 send TokenPool(p,)to p,,o,,

5 end
end ReportStatus

Figure 4 Reporting of the Member Status

member. When a change in the querying member is detected, the token pool gets sent to the new

querying member, in addition to the status response. The change of the querying member is

17

recognized by inspecting p,,,0 , and comparing it to the originator of the current status query.

ReportStatus does not compute the clockwise neighbor, but simply responds to the sender of the

query (see rule to determine new cwnbr, earlier in this chapter).

When the application generates a request to join a group, an instance of the MP gets

spawned. It obtains the address of a site running a member, sends a join request message to it, and

waits for an intimation of the request approval for a preset interval, before re-sending the request.

Before the request is resent, the site is searched again for other members. In the case of no success,

other sites are searched in the same manner. This ensures that, if the member receiving the request

departs before processing it, the following request will be sent to a different member of the group.

The receiving member p, runs an algorithm as specified in Figure 5.

InitiateJoin for a join request message/token for p,, at p,
I while (true)
2 if (p,, E STp,, GVp,)
3 receive join request message or token for p,
4 end
5 if (p, = ph,)

6 send initiate agreement message to ProcessAgreeTkn for p,
7 block until ProcessAgreeTkn acknowledges end of processing
8 else
9 STpi(Pnew) <-JoinRequested
10 add joinreqp,(p,,) to TokenPool(p,)
11 if (join request message) /* p., locates p, and sends its join request *1
12 generate joinreqp,(p•,,) token
13 end
14 send joinreq token to cwnbr(p,)
15 end
16 end

end InitiateJoin

Figure 5 Processing of a Join Request Message/Token

A non-host member, receiving a request message for the first time, generates the

joinreqp,(p•,) token and adds it to the local token pool. It enters the Join Requested status for p,,,,

in its status table and sends the token to its cwnbr.

18

A duplicate join request is rejected if there is an entry for p,n, in the local status table (i.e.,

this particular join request was already received and processed).

If the member receiving the request message or the corresponding token is the ring host,

it generates the agreement token, updates the local status table and token pool, and sends it to its

cwnbr.

2. The Agreement Phase

The algorithm used to process an agreement token is shown in Figure 6.

If the member that receives an agreement token for the first time is not its initiator, it must

simply pass it on to its clockwise neighbor, after adding it to its token pool and updating the local

status table (lines 10-14). However if it is the initiator of the token, it must generate a commit token

because the agree token has circulated back to it.

The receiver of a duplicate agree token must also generate a commit token if the

agreement initiator and all members in between had departed after generating the agreement token.

This indicates that the token has completely circulated around all the surviving members. In this

case, the member generating the commit token will have an entry in its local status table for the

initiator of the token, and all members in between (line 8).

Any member commits a change to its view when it processes a commit token for the

change. Thus, the initiator of a commit token commits the corresponding change locally and sends

it to the clockwise neighbor.

There are two aspects to committing a change in the group view in this protocol. Firstly,

since the ring configuration may lead to the arrival orders of two commit tokens to be opposite at

two different members, the must be a mechanism to ensure that changes are committed in a

consistent order at all members. Secondly, when a change is committed, it must be ensured that all

protocol-related entities are correctly updated.

The correct ordering of all changes is based on the rank of the member whose status

change is being processed. The ordering is imposed at the initiator of the commit token as follow

if the rank of the member with the changed status is the lowest among all the members for which

19

ProcessAgreeTkn for agreep,(Pk) at p,
1 if (initiate agreement message received) /* p, = pj */
2 add agreep,(p.) to TokenPool(p,)
3 STpj (Pi) <-- DepartureA greed or JoinAgrred
4 send agreepf(pk) token to cwnbr(p)
5 send acknowledge to calling process
6 else /* a token is received */

/* a commit must be generated either when I am the agreement initiator or
when a duplicated token is received due to departure of the agreement
initiator p, */

7 if ((join && p, k STp, GVp,) 11 (departure && Pk E GVp,))
8 if ((Pi = Pj) 11 { (Pi * && (duplicate token) &&

(Vp 1 s.t. p, "4pi,p, E STpi) })
/* agreement phase completed, hence initiate commit phase *1

9 compute rank Vp/ E STp1 with Agreed status
10 if (rank(Pk) is smallest)
ll send an initiate commit message to ProcessCommitTkn

for this status change
12 else

/* depending upon whether for join or departure of Pk */
13 STpL (Pk) '- DeparturePending or JoinPending
14 end
15 else
16 if ((pi *p P) && (not a duplicate token))
17 add agreep,(Pk) to TokenPool(p.)
18 STp1 (Pk) <-- DepartureAgreed or JoinAgreed
19 send agreep,(pk) token to cwnbr(p,)
20 end
21 end
22 end
23 end

end ProcessAgreeTkn

Figure 6 Processing of Agreement Tokens

there is an agreement token in the token pool, a commit token is generated. Otherwise, commit

token generation is kept pending until all changes for members with a higher rank have been

committed (lines 10-14). The eventual removal of the pending tokens is described during the

discussion of the commit phase, later on. It is emphasized that a departed member can get a pending

status assigned only at the member that initiates a commit token for the departure.

20

To ensure that due to a failure of the anti-clockwise neighbor, agreement and join request

tokens are not processed for elements whose transition phase is completed (and as a result the

corresponding tokens are no longer in the local token pool), line 7 rejects join request and agree

tokens for elements that are been integrated (or have already been integrated) in the group, and

rejects fail agree tokens for elements no longer belonging to the group.

3. The Commit Phase

The processing of a commit token, as it circulates around the ring, is shown in Figure 7.

ProcessCommitl for comtnitp, (p) at p,
I if (initiate commit n. sage received)
2 generate commit token
3 token to be processed <-- generated token
4 else if (not ((p, = p) II (duplicate)))
5 token to be processed (-- received token
6 else
7 exit
8 end
9 CommitChange
10 while (3 p, E ST A with a higher rank & pending status received

before agreep,(pk))
11 CommitChange in rank order
12 end

end ProcessCommitTkn

Figure 7 Generate/Receive and Process a Commit Token

If a member is the commit initiator (i.e., the token has circulated back) or if the commit

token is received again, it simply exists and no action is taken (line 7).

If the commit token is received for the first time at a member, appropriate commit action

must take place (line 9).

After committing the change specified in this token, it is likely that a change for which a

commit token generation was kept pending locally, can now be committed and propagated, because

it now has the lowest rank. All such pending changes are now processed (lines 10-12).

21

The update of all the protocol-related quantities upon committing a change is

encapsulated as CommitChange, whose steps are shown in Figure 8. These steps are assumed to

Commi*Change for commitPJ(pk) at p,
/* Depending on whether a join or departure */

1 add or delete Pk from GV(p,)
2 delete p, entry from STp,
3 vn(p5) -- vn(p) + 1
4 delete all commit tokens received before agreep/(p,) from TokenPool(p,)
5 if (join committed)
6 delete joinreqp,(p,)
7 end
8 add commitpJ(pk) to TokenPool(p,)
9 delete agreepI(pk)
10 if (current host = P)

11 determine new Pho,
12 end
13 if ((join committed) && (ph, = p,))
14 send STp,, TokenPool(p,) and GV(p,) to acwnbr(p,)
15 end
16 send commitp1 (pk) token to cwnbr(p,)

end CommitChange

Figure 8 Actions for Committing a Change

be executed atomically, so that all status changes are mutually exclusive (serialized and non-

reentrant).

Aside from passing the token on to the clockwise neighbor, the local group view. view

number and token pool must be updated. Line 4 determines the token pool update policy that

garbage-collects old commit tokens. The principle followed in this update is that a token should be

deleted from the token pool only when the member is certain that its use is over.

A member keeps its token pool ordered according to their arrival times, inspects all the

tokens in it, and deletes all the commit tokens received before the agreement token for the change

committed. The commit token just processed is not deleted when the member it is sent to departs

before receiving it. This update policy exploits the fact that the group members are connected in a

ring built over FIFO channels.

22

Depending on whether a departure or join is committed, different special actions are

required. For example, if the departure being committed is for the ring host, the member determines

a new p,,,, (lines 10- 12) according to the rule given earlier in this chapter. If the member committing

a join is the current group host, it updates the anti-clockwise neighbor to be the new member, and

sends the local state to it (lines 13-15).

4. Ensuring An Identical Sequence Of Commits

As members perceive departures/joins around the ring, they initiate agreement phases

independently. Therefore, in this protocol, it is possible for multiple agreement phases to proceed

simultaneously around the ring, resulting in multiple commit tokens that circulate around the ring

at the same time.

Consider any two such status changes. they divide the ring in two pieces. Clearly, the

order in which the commit tokens for these changes reach the members in these two pieces will be

opposite to each other. An identical commit order i maintained in this situation, as specified by lines

10-14 in Figure 6.

When a commit token is to be generated, it is first checked to see if there are any

unprocessed agreement tokens in the token pool. If there are some, commits resulting from these

are ordered identically around the ring; otherwise, a commit token is generated and the change

committed by the commit process at the request of the agreement process (line 11, Figure 6). If

there are unprocessed agreement tokens in the token pool, the commit initiator determines if the

member for which a commit is to be initiated has the smallest rank among all the members for

which here are unprocessed tokens (lines 10-I1). Agreement tokens for joins in the pool are not

considered because members always join with the highest rank.

It should be remembered that the rank of a member is its distance from I),, in the

clockwise direction. If the rank is not the smallest, the local status is marked as pending (line 13 of

Figure 6), and the change is committed and propagated at a later time. thus, use of the rank ensures

that the pending status for a change gets marked onlY at the commit initiator. Note that the ranks

23

are evaluated during the agreement process (Figure 6), so they adapt to changes in the ring

configuration.

C. SAFETY AND LIVENESS

Based on the protocol description in the previous section, we prove that the protocol solves

the membership problem correctly (safety), and that every status change is eventually committed

by all operational members (liveliness).

Lemma Li: Every operational member always receives a token .for a change if members

update their token pool using CommitChange (Figure 8).

Proof: If p, receives commitpJ(pk), it is guaranteed to have received agreep1(p,) some time

previously, because the commit phase is preceded by the agreement phase. Obviously, agreep/(p,)

has circulated completely around the ring. Suppose 3 a commitP,(p,) received at p, before

agreep,(pk). Thus, in between the arrivals of commitp,(pm) and commitp,(pk) at p,. 3 a token, vi:.

agreepJ(pk), that has circulated around the ring completely. This implies that, due to the FIFO

property of channels, commitp•(pJ) has circulated around the ring completely also, regardless of the

locations of p,, p, and p, around the ring. Thus, cornmitpi(p,) has served its purpose and can be

deleted from the TokenPool atp,. Therefore, both, agreep1(pk) and commitpl(p.) have completed their

use and can be deleted (lines 4-9 of Figure 8). By adding commitJ(pk) to the TokenPool at p., the

TokenPool(p,) update is complete.

Given this update policy, consider that cwnbr(p,) fails before receiving the token sent to it.

When pA receives he status query from cwnbr(cwnbr(p,)) due to thi, falluic, TkeuPool(p,), that

contains the token, is sent to the new clockwise neighbor of p, by ReportStatus. The token pool

preserves the FIFO order in which tokens have been received, had there been no failures. Therefore,

every operational member always receives a token relative to any change.

In fact, a string of departures with a length one less than the number of members that have

processed a given token can be tolerated before token loss occurs. In this pathological case, the

protocol ensures that a legal action is taken. For example, if the join request token gets lost due to

a string of departures, the potential member times out and re-initiates its search for another member

24

of the group it wants to join. In the case of a departure, it is shown later on (Theorem T2) that a

departure is always detected eventually and committed by all operational members, regardless of

the length of the string of departures.

Lemma L2: Exactly one p, determines itself to he j,,.

Proof: CommitChange determines a new host only when it commits a departure for the

current p,,. According to the rule for determining the new host, only the local group view is

inspected and the clockwise neighbor of the departed host is determined to be the new p,

According to Lemma L1, no tokens are lost. Therefore, the commit token for the departure of the

old hot is processed by every member. Since the host had rank = 0, which is always the lowest.

every member determines the same member as the new 1hO,.

Lemma L3: A newly joined member receives all the tokens for uncommitted changes and a

consistent group view.

Proof: p,,,, sends its GV, vn, ST and TokenPool to the joining element p,,,. The exception to

the rule to compute acwnbr ensures that the logical ring is correctly configured with p,,,.,, as the

highest ranked member. When the old acwnbr(phM,) notices that the querying member is different

from its p,,,, it becomes aware of the new member in the ring and sends is Token P-wl to it.

Therefore, all tokens that are passed to p,, while the state transfer to p.,.. is taking place are sent

to p,. this ensures that p,,,. behaves consistently with Ph,,,.

Theorem TI (Safety): The proposed protocol correctly so!vcs the GMP stated as

Vp, E GVv, (p) andVn < vn, GVn (pj) = GVn (P1)

given that all members start with the same initial group view, i.e.,

GV0(p,) = GVo(pj),ptpiE GVo(pj)

Proof: We provide a proof by induction.

Base Case: Vp1 ,pj E GV 0 (pa), GV 0 (p1) = GVo (p1) at system initialization.

Induction Hypothesis: Assume that:

25

Sk > 1 E N such that Vpi, pj E GVk (pJ) , GVk (p) = GVk (PJ)

We now prove that the next change committed by any two memoers that continue to remain

operation is identical. Consider any Vpi, pj E GVk+ 1 (PJ) . Without loss of generality, let

COLY1nfi1tpk(P:) be the next change to be committed by member p,
Pk

Without loss of generality, assume that P,) Pi. It is clear from the change detection
Pk Pk

instruments that Pj --) Pi and Pi -'• Pt. Therefore, if a change involving p, is view change (k+1),

committed at p,, either the only agreement token pk has at the time of initiating cojtniPnirf(p)) is for

pl, or p, has the smallest rank among all agreement tokens in the TokenPool at Pk. Now, a commit
Pj

token initiated for p, such that Pm. Pi cannot result in view change (k+l) at p,, because this

implies that p,, has a lower rank at p, than p,, whose agreement token will be part of the TokenPool

at p,. Therefore, agreement token for p,, would also be present in the TokenPool at p, and would

have the smallest rank at the time of initiation of commitpj(p,). This contradicts the fact that p. had

the smallest rank at Pk or was the only agreement token at p, Therefore, view change (k+1)

committed at p, is due to commitpk(pi).

Thus, given the induction hypothesis for view change k, we prove that

Vpi,pj E GVk+ 1 (pj), GVk+ I (Pi) = GV.+ I (P)

This completes the proof by induction.

Theorem T2 (Liveliness): For any change, the agreement phase is always started.

Proof: In the case of a departure, the member who perceived it may itself depart before

initiating the agreement token, or after sending it. In the latter case, the agreement phase that has

been started will result in circulating the agreement token back to cwnbr(,) sometime. the commit

phase is then carried out by cwnbr(p,) (line 8 of Figure 6). In the former case, cwnbr(p,) perceives

the departure of p, and initiates an agreement phase. It attempts to monitor acwnhr(p,), whose

agreement p, could not initiate. cwnbr(p,) perceives acwnbr(p,) as deputed also and initiates an

agreement phase for it. This sequence of events is extended if there is a string of departures.

Therefore, the agreement phase for a departure is always started.

26

In case of a join, if p, is the host and fails before initiating the agreement phase for a join,

cwnhr(p,) determines itself to be the new host and receives the joinreq token as part of the

TokenPool from its new acwitnbr(p.). it can now initiate the agreement phase. Since every

operational member always receives a token (by LI), once a join request has been received and

propagated by an operational member, an agreement phase for its joi i is always started.

In the pathological case, when the member that receives the join request message departs

before propagating it, or when there is a string of failures that result in a total loss of the join

request, the joining member will timeout waiting for the process to complete. and it will restart the

joining procedure.

27

Ill. PROTOCOL DESIGN

In this chapter we discuss the implementation aspects of the proposed Group Membership

Protocol. General design principles are presented first, and a detailed break-down of the protocol

is performed by specifying the individual processes.

The protocol runs as a distributed script, with multiple instances of "members" residing in one

of many sites. Each member is a collection of communicating processes. A member, as an entity,

communicates with application processes (delivering the current group view), and with other

elements (to carry out the MP script).

The major functionalities of the MP are detection of departure, agreement on departure,

committing of departure, addition of members and providing the current group view to application

processes.

A. PROTOCOL SOFTWARE DESIGN

The top level interface of the MP element is presented in Figure 9.

Application

(membership service user)

Initialization
code

Membership Protocol

Communication Layer (FIFO)

r Network
(unreliable message delivery)

Figure 9 Membership Protocol Interfaces

28

The ring topology ensures that communication between members is ordered and restricted.

Each member has communication links with two adjacent members, namely the clockwise and

anti-clockwise neighbors. The exception to this rule occurs when a potential new member joins the

group. In this situation a join request message is sent by the potential member to an arbitrary

member of the group, and later on, the host sends an initial parameters message to the potential

member, to give it member status.

B. PROCESS SPECIFICATION

Each protocol instance is formed by a number of processes, linked by a set of communication

channels. The individual processes that form the protocol instance are described in detail in the

following sections. Table 2 summarizes all processes used to implement the protocol.

Table 2 PROTOCOL PROCESSES

PROCESS SUB-PROCESS

Fifo Channel Layer Front Port

Back Port

Monitor Process Status Monitor

Status Reporter

Timer

Join Processor

Agreement Processor

Commit Processor

Group View Manager

Status Table Manager

Token Pool Manager

The internal functionality of each process, along with its interactions with other processes, are

defined.

29

1. Fifo Channel Layer

This process is responsible for all communications with other elements. It provides the

interface to all internal processes needed to propagate or accept messages to/from the network. It

is functionally sub-divided in two independent processes: FRONT and BACK.

The FRONT process handles all communications with the clockwise neighbor and the

BACK process communicates only with the current anti-clockwise neighbor. The exception to

these rules are related to the potential member's join process (see Figure 10). FRONT processes

only connect to BACK processes and vice-versa, resulting on a functional decoupling of the two

sub-processes.

This decoupling of the two sub-processes allows the element to live as a singular group,

thus facilitating the creation of a new group. The process of joining an existing group starts with

the creation of a single-element group that later joins the desired group.

In the case of a network that does not provide reliable connections, or when the use of this

type of connection is not desired due to other considerations (see discussion on the Unix-based

implementation later on), the FIFO-channel-layer provides a form of data link protocol based on a

modified alternating bit protocol [19]. This protocol uses a serial number that increases by one for

each message processed. Like the alternating bit protocol, a message can only be transmitted, after

the previous one is positively acknowledged by the destination.

a. Front Sub-process

This sub-process handles the communication with the clockwise neighbor. It also

receives Join-Request messages from new members. When joining a group, it receives the

InitialParameters message from the host.

Front is assumed to be a dual-ported process: it has an internal communication port

(at the top of the box in Figure 10), and an external communication port (at the bottom in Figure

10).

30

Initial
Parameters MONITOR

PROCESS Token
Token Pool

Status Query MONITOR epor
StatusRepor _ PROCESS Status_Query

Ini,'•tial_ ken COMMITPR ESO

PROCESSOPR
JTýo~ken

ToenPooll AGREEMENT]Token
iToken "iPROCESSOR

Status_-Query

BAKToken-Pool FRONT
Status-Report

jooin I Initial I Initial
Ale-q S Parameters Join-Request Parameters

ACNRNEW M MBER CWNBHS
(FRONT) (FRONT) (BACK) (BACK)

Figure 10 Fifo Channel - Process Dependencies

The clockwise neighbor (cwnbr) is determined by inspecting the destination of the

outgoing StatusReport message. It is updated on every status report sent out, thus permitting an

asynchronous change in the clockwise neighbor.

Figure 11 describes the full algorithm used to implement this sub-proL.:ss. In these

algorithmic representations. italics are used to denote messages and bold face to represent internal

variables, or data structures.

This process executes an infinite loop, checking for the arrival of a message at either

of its ports (line 1). Depending on the port that delivers the message, appropriate action is taken.

If a message is received at the external port, it is simply dispatched to the appropriate

destination, after being striped from its external header (lines 3-8). Lines 9-11 are used to

implement the acknowledgment protocol in the case of a non-reliable network.

31

I Wait for a channel ready to read
2 if (external channel ready)
3 if (StatusQuery)
4 send StatusQuery to MONITORPROCESS

5 else if (JoinRequest)
6 send Join Request to JOINPROCESSOR

else if (Initial Parameters)
8 send Initial Parameters to JOINPROCESSOR
9 else if (TokenAck)
10 if (Received_SerialNumber = Expected_serialnumber)
1l remove Head-oLQueue
12 decrement Queue-Counter
13 end
14 else /*internal channel ready*/
15 if (Token)
16 change Token to external format /* add external header */
17 insert Token in queue
18 increment SerialNumber
19 increment QueueCounter
20 else if (TokenPool)
21 discard all messages in queue
22 change Token Pool to external format /* add external header */
23 insert TokenPool in queue
24 increment SerialNumber
25 increment QueueCounter
26 else if (Status Report)
27 update cwnbr
28 send Status-Report to cwnbr
29 end
30 if Queue-Counter > 0
31 send Head-ofQueue to cwnbr
32 set Expected_serial_number = Head_ofLQueue_serial-number
33 end

Figure 11 Fifo Channel - Front Process

If the received message comes from the internal port, different actions are taken

according to the particular message received.

If a token is received, the corresponding external message is assembled (it includes

the serial number and the originator address), and inserted in the message queue (lines 16-17). This

queue stores all outgoing tokens until their reception is positively acknowledged by the destination.

32

The serial number is incremented, to be used by the next token and the counter QueueCounter is

incremented to reflect the new queue size. Messages left in the queue are the ones whose

transmission is not completed (lines 16-25).

The TokenPool message always follows a Status_Report that is sent to a new cwnbr

(see Monitor Process specification). This meas that all messages left in the queue are obsolete and

can be discarded (line 21), because all such messages are Tokens that are a present on the

TokenPool. At this point the message is handled exactly the same way as if it were a token (lines

23-25).

When the message is a StatusReport, the destination field is used to update the

cwnbr, and then the message is transmitted. There is no need to apply the acknowledgment protocol

here since these messages are not critical to the protocol integrity (if this message is lost, it means

that the network is experiencing perturbations, and that will result on a failure assessment by the

current monitoring element). This sequence of actions is described in lines 27-28.

Regardless of the message received, if there is at least one outstanding message in the

queue (i.e. QueueCounter is non-zero), the message at the top of the queue is sent out to the

current cwnbr, and its serial number becomes the expected serial number for the next acknowledge

(lines 30-32).

Input data flows (internal port): Token, TokenPool and StatusReport.

Input data flows (external port): Initialparamneters, Status_Quern, Join Reqtust

and Token Ack.

Output data flows (internal port): InitialParameters, Status_Query and

JoinRequest.

Output data flows (external port): Token, TokenPool and Status_Report.

b. Back Sub-process

This sub-process handles the communication with the anti-clockwise neighbor. It

also sends Join-Request messages from a potential member to an existing member of the group.

33

When the current element is the host of the group it sends the InitialParameters message to the

joining member.

Like Front, Back is assumed to be a dual-ported process: it has an internal

communication port (at the top of the box in Figure 10), and an external communication port (at

th,, bottom in Figure !0)

The anti-clockwise neighbor (acwnbr) is determined by inspecting the destination of

the Status_Query message.

Figure 12 describes the full algorithm used to implement this sub-process. The

process executes an infinite loop, checking for the arrival of a message at either of its ports (line 1).

Depending on the port that delivers the message, appropriate action is taken.

If a message is received at the internal port, it has to be transmitted to a destination

specified in the message itself. If it is a StatusQuery, its destination is used to determine the

current acwnbr (lines 3-5). In the case of InitialParameters and JoinRequest, the messages are

simply sent to the designated destination (lines 6-9).

If the received message comes from the external port, it is processed only if the

originator is the current acwnbr (line 12). The StatusReport message is sent to the Monitor

Process. Token messages are only accepted if they have the correct serial number (lines 15-20).

TokenPool messages are always accepted and set a new sequence for the expected serial number

(lines 21-25). Note that TokenPool messages meet the criteria in line 12, because they result from

a group reconfiguration triggered by a Status_Query message sent to the new acwnbr, that results

in the update of the acwnbr (line 4).

Input data flows (internal port): InitialParameters, Status_Quer. and

JoinRequest.

Input data flows (external port): Token, TokenPool and StatusReport.

Output data flows (internal port): Token, TokenPool and StatusReport.

Output data flows (external port): Initial_parameters, Status_QuerY, JoinRequest

and Token Ack.

34

I Wait for a channel ready to read
2 if (internal channel ready)
3 if (Status_Query)
4 update acwnbr
5 send StatusQuery
6 else if (Initial _Parameters)
- send 1initial Paratne;ers
8 else if (JoinRequest)
9 send Join Request
10 end
11 else /*external channel ready*/
12 if (message originator = acwnbr)
13 if (StatusReport)
14 send Status Report to MONITORPROCESS
15 else if (Token)
16 if (Serial_Number = ExpectedSerialNumber)
17 send Token to AGREEMENTPROCESSOR
18 send Token Ack /*to acwnbr*/
19 increment ExpectedSerialNumber
20 end /*out of order messages are discarded*/
21 else if (TokenPool) /*Token_Pool is always accepted*/
22 send Token Pool to AGREEMENTPROCESSOR
23 send Token Ack I*to acwnbr*/
24 set ExpectedSerialNumber = SerialNumber +1
25 end
26 end
27 end /*only messages from acwnbr are accepted*/
28 end

Figure 12 Fifo Channel - Back Process

2. Monitor Process

This process is responsible for checking the health status of the current anti-clockwise

neighbor. It does so by sending periodic Status_QuerY messages and checking for the arrival of the

corresponding StatusReport within a specific time interval. It is also the process that performs the

complementary function by sending a StatusReport in response of an incoming Status_Qu'rv'

from its cwnbr.

The two functions are totally independent, so they are best implemented by two dedicated

sub-processes: Status Monitor and Status Reporter.

35

The maximum delay allowed for a StatusReport is determined by another sub-process,

Timer. This value can be fixed, or it can be made adaptive to the network conditions.

Figure 13 shows the internal constitution of the Monitor Process and all

interdependencies, both within the process and with other processes.

AGREEMENT
PROCESSOR

StatusTableRequest Initiate

MANAGTU TA Status Table Token

TOKEN POOL

View-Request MANAGER

G R O U P V IE W r

T Oe

w
A G

MANAGER Grotuj/iewT Tok 9n Pool_
Token Pool I uest

STATUS STATUS
TIMER Start Timer MONITOR REPORTER

t-. i--
S - Status

R•rt Query TokenPool

Status-Query ..{StatusReport
FIFO FIFO

BACK FRONT

Figure 13 Monitor Process - Internal Structure and Dependencies

Given that this process centralizes the periodic status assessment of the neighbor

elements, it could also determine if the element is fully operational before answering to a

Status_Query request. This option is not used in the current implementation. We rather ensure that

an eventual failure in the element will bring all processes down.

36

a. Status Monitor

This sub-process checks the health of the current anti-clockwise neighbor by

periodically sending a Status_Quer. message. It expects a Status_Report in response within a time

interval defined by the auxiliary sub-process Timer. If a timeout occurs, the neighbor element is

assessed as failed and the following actions are taken:

1. An InitiateToken message is sent to the Agreement Process. This starts the

agreement phase of the element departure.

2. It determines the new anti-clockwise neighbor based on the current Group View

and Status Table, using the procedure described in the previous chapter.

3. Uses the new acwnbr as a target for all subsequent Status_Quer. messages.

It is important that these actions are taken in this strict order. Furthermore, we have

to ensure that the Agreement Process completes its processing before we carry on with steps two

and three.

Input data flows: Status_Report, GroupView and Status Table.

Output data flows: Status_Quer., ViewRequest and Status_TableRequest.

b. Status Reporter

This sub-process determines the health of the element and answers to Status Quer.

messages from the current cwnbr.

It keeps track of the element that is performing the queries.If it detects a change of

the cwnbr, it sends a Status_Report to the new querying element. It then requests a TokenPol

from the Token Pool Manager and sends it down to the Fifo Channel Layer, to be sent to the new

cwnbr. Note that The Fifo Channel Layer uses the StatusReport message to determine the current

cwnbr.

Input data flows: Status_Quer' and TokenPool.

Output data flows: StatusReport, TokenPool and TokenPoolRequevt.

37

c. Timer

This sub-process works as an interruptible stop-watch. It starts a count-down upon

receiving a Start_Timer message. The count-down can have one of two durations: a query timeout

interval, or a query period interval.

The query timeout interval is used to determine the failure of the acwnbr. This

interval must be set long enough to allow for reasonable delays in the transmission of a message

(token or token pool), its processing at the Fifo Channel Layer of the destination, and the

transmission of the corresponding acknowledge message. If the interval is to small, the probability

of a wrong assessment of failure increases. An interval too long will cause the protocol to react

slower to real failures. It is possible (and probably desirable in same network configurations) to

make this interval adaptive to the network conditions.

The query period interval sets a querying period, that determines how often the

querying process is to be performed. Using a longer period will reduce the traffic on the network.

while a shorter period will improve the failure detection time.

Input data flows: StartTimer.

Output data flows: Timeout.

3. Join Processor

This process centralizes the actions during the joining of a new member. Depending on

the role of the current element, different set of actions are taken. These rolets are: prospective new

member, host of the group, any other element of the group.

The interactions of Join Processor with other processes are shown on Figure 14,

The actions taken by this process depend on the role assumed by the element. They are

described below.

When the current element is a prospective new member in the process of joining an

existing group, or of establishing himself as a new group. the following actions are taken.

The process starts a search for elements of an existing group in a well-known location

(i.e., in a specific file at a given set of hosts).

38

AGREEMENT itiateToken InitialParameters INTEGRATE

M RToken

GROUP VIEW ISTATUS TABLE
MANAGEMANAGER IMANAGER

GroupView J StatusTable
JOIN

PROCESSOR
ViewRequest StatusTableRequest

JoinRequest Token Parameters
• JoinRequest

FIFO FIFO

BACK FRONT

Figure 14 Join Processor - Process Dependencies

If the desired group is not available (because all elements have failed or this is the first

element of a new group), then the element is to become the only member of a new group. This is

already the case, because the element is initiated such that it becomes an autonomous singular

group. The only action to be taken in this case is to create the well known file corresponding to the

new group.

If an element is found, the Join Processor sends it a JoinRequest message and waits for

the arrival of an InitialParameters message. If this message does not arrive within a specific time

interval, it is as;umed that the recipient of the Join_Request could not forward the request. In this

case the joining process is repeated, starting with a new search for a living element.

If the Initial_Parameters message is received in due time, the Join Processor forwards it

to the Integrate Member process.

When the current element is the host of the group, the following actions are taken.

39

If the prt sess receives a JoinRequest (from the prospective new member), or a Token of

type join request it as to generate a Token of type joinagree. Since token generation is centralized

at the Agreement Processor, an InitiateToken message is sent to it, requesting the generation and

propagation of the Token.

When the current element is a member other than the host of the group, the following

actions are taken.

If the process receives a JoinRequest, it as to generate a Token of type join-request (note

that this is a different message than JoinRequest). For this effect an InitiateToken message is ,t

to the Agreement Pro•.cssor.

When the process receives a Token of type join-request, the same token is sent down to

the next element.

Input data flows: JoinRequest, InitialParameters, Statuts_Table, Token and

GroupView.

Output data flows: JoinRequest, Token, InitialParameters. Status_TableReqtW.t,

InitiateToken and ViewRequest.

4. Integrate Member

This process initializes the internal status of the element, such that it becomes consistent

with the group. It also provides the complete status to new members joining the group.

Figure 15 shows all the connections of this process.

This process receives the InitialParameters message, and extracts from it the messages

InitialGroup_View, InitialStatusTable and InitialTokenPool. These messages are then sent to

the appropriate Manager process.

When the current member is the group host, and the joining process has completed the

agreement phase, a SendinitialParameters message is received from the Commit Processor. In

this case the InitialParameters message is assembled and sent to the new member.

Input data flows: Initial Parameters, SendInitialParameters, Gronp_I 'w.

StatusTable and TokenPool.

40

COMMIT

PROCESSOR

Send_InitialParameters

Status Table_

MANAGER InitialGroup- Initial Status_ MANAGER

O Group View StatusTable- :1INTEGRATE 1

InitParametersm TokenPeq s TaBlE Rq en Pool

Init5alPParameters.s- In'. .,:_-'.-:.en_
JOIN lP-ool _{TOKEN POOL

S PROCESSORk Token Pool an MANAGER

FIFO Request e

BACk

Figure 15 Integrate Member - Process Dependencies

Output data flows: InitialTokenPool, initialStattusTatbh. [nitizlGr•tl,_ti't'l..

Initial-Paramneters, TokenPoolRequest, Sutats_Tiahle_Reqntest and View -Reqltest.

5. Agreement Processor

This process handles all Tokens received from the exterior. It receives and processes

agreement tokens from other elements. and sends them down to the next member if necessa.y.

The agreement processor also assembles tokens that are to be locally originated. upon

reception of the Initiate_-Token message, adds them to the Token Pool, and sends them down to the

next member.

The above operations implement the processing of agreement tokens described in

Chapter 11, Figure 6.

All non-agree tokens are dispatched to the appropriate internal process.

Figure 16 details all the dependencies of this process.

41

JOIN
PROESSORJ

Initiate_Token Token(i•inRequest)

GROUP VIEW Group_View Token COMMITMANAGER Gru, Ve Initiate Token PR ESO

RequestI

MANAGER MANAGE

Update Status Token

StatusTable AGREEMENT Token Pool
StatusTable Request PROCESSOR TokenPoolRequest

T~e Token

TokenPool

FIFO FIFO

BACK FRONT

Figure 16 Agreement Processor - Process Dependencies

If the message is an agree token, it is processed and the internal status of the element is

updated by sending an UpdateStatus message to the Status Table Manager.

If an agree token is found to have completed its cycle, the commit phase is initiated by

sending the InitiateToken message to the Commit Processor. The current Group_Viei.

TokenPool and StatusTable are used to determine this event, as described in Chapter II. Figure 6.

If the incoming message is a commit, it is sent to the Commit Processor for further

processing.

If the incoming message is a join-request token, it is added to the Token- Po, and

Status-Table and then sent to the Join Processor for further processing.

To avoid duplication of the joining process for a member that has just completed the

joining process, only join requests and join agree tokens belonging to elements not present in the

42

local status table and group view are accepted. In the same way, agreements for departure are

accepted only if the subject element is present in the group view (see line 7 in Figure 6).

When receiving a token pool, all tokens are extracted and processed if they are not present

in the local token pool.

It is important to mention that when searching for a particular token, only the type and

the subject are relevant For example in the token joinqqreepj.,), p, is the subject and joinagzree is

the token type. while Pk is the token originator. The member responsible for a particular group

reconfiguration can change during the process, due to departure of the originator, and so join

requests, agreement and commit tokens, referring to the same action, can have different originators.

Input data flows: Token, Group_View, StatusTable and TokenPool.

Output data flows: Token, InitiateToken, ViewRequest, TokenPoolRequ,.st.

UpdateStatus and StatusTable_Request.

6. Commit Processor

The commit process is responsible for committing the removal or the joining of an

element from/to the group, as described in Chapter II, Figure 7 and Figure 8.

Figure 17 shows the interconnections to other processes.

The inputs to this process are Token (commit) and InitiateToken, and they both come

from the Agreement Processor.

If an InitiateToken message is received, the corresponding commit Token is generated

and processed exactly as if it were a token coming from another member.

A commit token is processed if it has not yet been received (i.e. it is not a duplicate). The

Group View and Status Table are updated. All commits left pending, referring to an element with

higher rank than the current token subject, and received before the agree are now committed. All

commit tokens received before the agree token for the element being committed, are deleted from

the Token Pool. If committing a join, the corresponding join-request token is also deleted. The

commit token is then added to the Token Pool and the corresponding agree is deleted.

43

INTEGRATE
MEMBER

SendInitialParameters StatusTable
[AGREEMENT Toe - •STATUS TABLE

PROCESSOR InitiateToken Update Status MANAGER
StatusTable_

Request

MANAGER MANAGER

I Update-View Tok" I en I
Group_View COMMIT TokenPool

ViewRequest PROCESSOR Token PoolR uest
DeleteToken

Token

FIFO

FRONT

Figure 17 Commit Processor - Process Dependencies

When the current element is the host, and committing a join, a SendInitial_Parameters

message is sent to the Integrate Member process.

The current commit token is sent to the next member of the group.

The process of committing changes to the internal status has to run atomically, to ensure

a correct manipulation of the Group View (Figure 8).

The same note on token identification previously stated for the Agreement Processor also

applies.

Input data flows: TokenPool, Group_View, StatusTable, Initiate_Token and Thken.

Output data flows: TokenPool-Request, ViewRequest, DeleteToken, Update_ Vhw,

Token, Status_TableRequest and SendInitial Parameters.

44

7. Group View Manager

This process manages the membership list (group view) and the view number. The view

number is a monotonically increasing value that is set at start-up time or by the InitialGroupView

message.

The process dependencies are shown on Figure 18.

APIAIN Groupi/lew ViewRequest AGREEMENTPPLIATIO • =PROCESSOR~O

GroupView

MEMBER View-Request Update-View PROCESO R

G _iew GROUP VIEW _ Request

Initial_Group_ýView M NGR Group_V7iew

JOI I- IGroup-View I Group-ýView

"Ve-eus ViewReus MNTR

Figure 18 Group View Manager- Process Dependencies

When this process is initialized, i.e. executed for the first time, it has to establish a view

that reflects a singular group, with this element as the only member.

When an InitialGroupView is received, the original view has to be discarded and the

new view becomes active. This happens as a consequence of a successful join to an existing group.

In response to a ViewRequest, a GroupjView message is assembled and sent to the client

process.

The UpdateView message has two possible types, add and delete. When an element is to

be added to the view, it is always inserted with the highest rank, i.e. anti clockwise from the host

45

as seen in the logical ring. When an e' -ment is to be deleted, the ring is reconfigured such that the

rank ordering is maintained.

Every time the Group View is changed, this process notifies the application by sending a

GroupView message. It also updates the well known file that stores all current members.

Input data flows: ViewRequest, UpdateView and InitialGroupView.

Output data flows: GroupView.

8. Status Table Manager

This process keeps track of the status of all members that are in a transition phase.

The process dependencies are shown on Figure 19.

JOIN
PROCESSOR

StatusTable _ SauTable
Request

StatusTable_ Status_ Table
AGREMENT Request Request CMI

PROCESSOR ' PROCESSOR
StatusTable StatusTable

UpdateStatus STATUS TABLE Update Status

I nitialStatusTable : AAE

StatusTable StatusTable

_ _ýý StatusTable_ RCS

Request Request

Figure 19 Status Table Manager- Process Dependencies

When this process is initialized, i.e. executed for the first time, it has to establish an empty

Status Table.

When an InitialStatusTable is received, it is established as the current one and made

active. This happens as a consequence of a successful join to an existing group.

46

In response to a Status_TableRequest, a StatusTable message is assembled and sent to

the client process.

The UpdateStatus message has several possible types, corresponding to the various

transition status specified by the protocol. When the element referenced in UpdateStatus already

,as an entry on the table, the manager deletes the old entry and inserts a new one. If the element

does not have an entry in the table, then a new entry is inserted with the appropriate status.

Input data flows: StatusTable_Request, UpdateStatus and Initi'il Status Table.

Output data flows: StatusTable.

9. Token Pool Manager

This process keeps track of all tokens processed by the element. Received tokens are

stored in a ordered list.

Figure 20 shows the dependencies of the Token Pool Manager.

TokenPool Token Pool

AGREEMENT Request Request COMMIT
PROCESSOR Toe P PROCESSORSToken_Pool , Token_Pool

Token T N P L DeleteToken
TOKEN POOL Token

Initial.TokenPool 1 ANAGER Token

EMBERPROCESS
oken Pool Token Pool_
Request -Request

Figure 20 Token Pool Manager- Process Dependencies

When the process initiates its execution, the Token Pool must be initialized as empty.

After a successful join an InitialTokenPool message is received, the Token Pool is extracted from

the message.

When a Token is received, it is inserted at the end of the list.

47

The DeleteToken message causes the removal of the named token. This is the only

mechanism available to delete tokens. Particular care is to be taken, when deleting tokens, to search

only for the type and subject, as explained in the discussion of the Agreement Processor.

Input data flows: Token, DeleteToken, TokenPool_Request and Initial Token Pool.

Output data flows: TokenPool.

C. DATA STRUCTURE DEFINITIONS AND MESSAGE FORMATS

Every element keeps an internal state that reflects the current group as it is perceived. This

state is composed of three structures: Group View, Status Table and Token Pool.

In previous sections we described how each structure is managed by a special process, that

acts a server. These servers are the Group View Manager, Status Table Manager and Token Pool

Manager. The structures are private to the respective server. The Managers provide services to

eventual clients (other processes of the member), in order to provide a view of the structure, and

the necessary updates.

To carry the state information as needed from process to process, and to carry out the actions

required by the protocol definition, processes exchange messages. Some messages are exchanged

between members, some others are used exclusively for intra-element communication, and some

are used for both situations.

The following sections describe the data structures and the messages used in this protocol

implementation.

1. Data structure definition

Each data structure is described in detail.

a. Group View

This structure has three components: View Number, View Size and Member List.

A graphical representation of the Group View structure is given in Figure 21.

The view number is an integer value that is incremented by one each time the view

changes.

48

Member
List

View Member mber Name
Number (Rank 0) Meme

Group MemberSize (Rank 1)MebrNm

Figure 21 Group View Data Structure

View size is an integer that reflects the number of entries in the member list.

The member list is an ordered data structure data reflects the logical ring that supports

the Group Membership Protocol. Each element of the list identifies one particular member. The

host is well identified in this structure, because it is always the first entry (i.e., the member with

rank 0). Note that the rank information is not stored in this structure, but rather evaluated when

needed as described in Chapter II. The structure can be implemented as a linked list, were the host

is the node at the head, and all other members are linked by rank order. There is at least one entry

in the Member List (the current element in a singular group).

Each member has an unique Member Name that is used to fully and unequivocally

identify it.

49

b. Status Table

This structure has two components: Table Size and Status List. The internal

structure of the Status Table is given in Figure 22.

Status
List

S~Member Name

Table Member M-N
Size Member Status

S[mb Member Name
Member

Member Status

MemberMember Name

Member Status

Figure 22 Status Table Structure

Entries in the Status List are referenced by the member name, and have a coded string

field that reflects the status of the corresponding member.

The Table Size field has a value equal to the number of entries in the Status List. There

can be an empty Status Table, where Table Size is zero and Status List is a Null list.

c. Token Pool

This structure has two components: Pool Size and Token List. The structure of the

Token Pool is graphically represented in Figure 23.

50

Token
List

Pool Subject Name
Size Originator Name

Subject NameToken

Originator Name

Subject Name
Token Originator Name

Figure 23 Token Pool Structure

The Toke, List has entries that correspond to tokens. The encoding of a token follows

the format token_tvpep,(pk), where p, and Pk are member names of the token originator and subject

respectively, stored using the Element Name data format.

Pool Size has the value corresponding to the number of entries in the Pool List.

The Token Pool can be empty, i.e., there are no unprocessed tokens outstanding. In

this case the Pool Size is zero and Token List is a Null list.

2. Message formats

We have seen that processes can exchange several different messages. These messages

were referenced informally during the discussion of the protocol and process specifications, and

were identified by descriptive names.

Messages exchanged by the processes that constitute a single element are assumed to use

reliable communication channels, i.e., channels that ensure the delivery of messages and maintain

51

the correct ordering. These messages share a common general format and are collectively named

Internal Messages.

Figure 24 shows a graphical representation of the internal message format.

INTERNAL FORMAT

I MESSAGE IMESSAGETY'PE: DATA #
Figure 24 Internal Message Format

Messages that are exchanged between Back and Front processes use the Internet network

communication channels. These messages, depending on the adopted network interface, travel

through possibly unreliable and non-fifo channels [20]. It is then necessary to encapsulate the

message with additional components that are used by the Fifo Channel Layer as described earlier.

These messages share a common format and are named External Messages.

Figure 25 shows a graphical representation of the external message format.

EXTERNAL FORMAT

ISERIAL MESSAGE IMESSAGE IMESSAGE
NUBR ORIGINATOR TYPE DAT

EXTERNAL HEADER"

Figure 25 External Message Format

Some messages have only one of the forms, while others have to be encoded in both

formats. All fields are encoded as ASCII character strings (non-null terminated) to allow

transmission over the standard network interfaces.

52

' , , l I I I

Table 3 lists all messages, the coding used in the message type field and possible formats.

This field has a fixed size of nine characters.

Table 3 MESSAGE LIST

.MESSAGE TYPE FORMAT
FIELD VALUE MFNTERNAL EXTERNAL

Token tokentokn X X

Token Pool tokenpool X X

Initial Token Pool inittpool X

Token Ack tokenackn X

Delete Token delttoken X

Initiate Token inittoken X

Status Table statustbl X

Initial Status Table inittable X

Status Query statusqry X X

Status Report statusrpt X X

Group View groupview X

Initial Group View initgview X

Initial Parameters initparam X X

Join Request joinreqst X X

Update Status updstatus X

Update View updatview X

Send Initial Parameters sndinipar X

View Request viewreqst X

Status Table Request statreqst X

Token Pool Request tokpreqst X

Start Timer starttimer X

Timeout timeout- X

53

As discussed earlier, each member of the group is identified by a unique name, which is

used in all messages and internal structures. Each name contains all the information needed to

access the member as far as the protocol is concerned, and is refered throughout as Element Name.

Element Name includes the Internet address (IP address) of the host were the member is

running, and the IP ports of its Front and Back processes. The IP address is encoded using the

standard dot notation ASCII string format [20]. The IP ports are stored as ASCII encoded integers.

Since the fields have variable length, a special character ";' is used as a separator.

Figure 26 shows a graphical representation of the Eiement Name structure.

ELEMENT NAME

FRONT BACKIP ADDRESS P PORT IP PORT

Figure 26 Element Name Structure

Each message type is now described in detail.

a. Token message

This message can be encoded in both internal and external formats. The encoding

follows the notation introduced for tokens token t'pep,(pk), where p, and p, are member names of

the token originator and subject respectively.

The graphical representation of this message in both formats is given in Figure 27.

The data field of this message is just a string representation of an entry on the Token

Pool. The ni'ssage tYpe field has the value "tokentokn".

Tokens can have different types, which are listed in Table 4. The token type field has

the corresponding code, in order to identify the token type. Like the inessaiqe type field, the loken

type has a fixed length of nine characters.

54

EXTERNAL FORMAT

I IT TOKEN I
SERIAL MESSAGE TOKEN TOKEN
SNUMBER A.;ORIGINATOR - tokentokn P TPEN SUBJECT ! ORIGINATOR #

INTERNAL FORMAT

SP = Space character tae~~TKNI TOK EN TOKENtokentokn •nSBET OI INAO

V\ = New line character P SUBJE T ORIGINATOR!

Figure 27 Token Message Format

Table 4 TOKEN TYPES

TOKEN TYPE FIELD VALUE

Failure agree failagree

Failure commit fillcomit

Join agree joinagree

Join commit joincomit

Join request joinreqst

b. Token Pool message

This message, like the Token message, can be encoded in both internal and external

formats. Figure 28 shows a graphical representation of the Token Pool message external format.

The internal format version of this message is similar to the internal version. but

excludes the external header, as seen in Figure 29.

The data field is a linear representation of the entire Token Pool structure, starting

with the Pool Size. The entries on the Token List are then concatenated with a special character

used as a separator.

55

EXTERNAL FORMATI SERIAL MESSAGE POOL

NUMBER ORIGINATO okenpool =R SIZE

TOKEN FIELD

sp = Space character ITOKEN TOKEN TOKEN
\n = New line character TYPE SUBJECT S ORIGINATOR

Figure 28 Token Pool Message External Format

INTERNAL FORMAT

tokenpool \ OO = OEN =TOE =TOZE N
III

TOKEN FIELD

sp =Space character TOKEN TOKEN TOKEN

\= New line character TYPE SUBJECT ORIGINATOR

Figure 29 Token Pool Message Internal Format

c. Initial Token Pool

This is an internal message used to initiate the Token Pool when a element becomes

a member of a group. Figure 30 shows the structure of this message.

Its structure is in all aspects similar to the Token Pool message (internal format), with

the exception of the Message Type field.

56

I I POOL TOKEN TOKEN Z TOKEN

TOKEN FIELD

sp Space character TOKEN TOKEN TOKEN I
\n= New line character TYPE SUBJECT ORIGINATOR

Figure 30 Initial Token Pool Message Format

d. Token Ack message

This message exists only in external format. It is used exclusively to implement the

acknowledge protocol at the Fifo Channel Layer level, and is not an integral part of the membership

protocol.

Figure 31 shows the graphical representation of this message.

NUMBER MESA O n tokenackn #NUMBR~nORIGINATOR

Figure 31 Token Ack Message Format

The serial number is a copy of the serial number of the original message being

acknowledged. The message originator field refers to the member that originated the ack message.

There is no data field in this message.

e. Delete Token message

This message only exists in internal format. Figure 32 shows the message format.

57

deittoken •TOKEN
SOKEN

TOKENTP PSUBJECT SPORIGINATOR #

Figure 32 Delete Token Message Format

The data field is equal to the data field of the token message whose token is to be

deleted from the Token Pool.

f Initiate Token message

Figure 33 shows the format of this message.

I itokn I TMOKEN TOKEN
intoe \n YPE SD SUBJECT #

Figure 33 Initiate Token Message Format

This messages is used to signal the Commit Processor and Agreement Processor, to

generate and process the corresponding token (commit or joinjrequestlagree, respectively), whose

subject is the element named in the token subject field, and with the type described in the token

type field.

g. Status Table and Initial Status Table messages

The format of these two messages is depicted on Figure 34. These messages are used

to represent the Status Table structure. The Status Table message is assembled by the Status Table

Manager and represents the current structure. The Initial Status Table is received by the same

manager and is converted into the new Status Table.

58

MSAE SIZE =ELEMENT SP STATUS E LEMENT STATUS #
SIZE

MESSAGE TYPE

statustbl
inhttable

Figure 34 Status Table and Initial Status Table Message Format

The possible status of an element, and the corresponding Status field coding, are

listed on Table 5.

Table 5 STATUS TYPES

STATUS FIELD VALUE

Join requested joinrqstd

Joining pending join pendg

Join agree joiflnagree

Fail pending f.ailpenda

Fail agree failagree

Clear status cIrstatus

These messages have exclusively the internal format. The data field is a linear

representation of the entire Status Table structure, starting with the Table Size. The entries on the

Status List are concatenated in order, separated by the special character

h. Group View and Initial Group View messages

These messages are similar in their structure, and are represented in Figure 35

Both messages represent the Group View structure. The Group View message is

assembled by the Group View Manager to represent the current view. The Initial Group View is

59

MESSAGE VIEW GROUP E LE ELEMENT
TYPE v NUMBER = SIZE ELEMENT

MESSAGE TYPE
groupview
initgwew

Figure 35 Group View and Initial Group View Message Format

received by the same manager, at the end of the joining procedure, and is used to establish a new

Group View.

These messages are exchanged only between processes of the same element, and so

they have an internal representation only.

The data field is a linear representation of the Group View structure. The first block

duplicates the View Number, and is followed by the Group Size. Then the entries of the View List

are concatenated in order. All these blocks are separated by a '=' character.

Elements are represented as usual in Element Name format.

i. Initial Parameters message

This is the more complex message used in this implementation. It can take the

internal or external format. Figure 36 shows the internal format only. As specified before. the

external format has the same data field, adding only an external header.

The Initial Parameters message is sent by the host to the newly joined member. The

new member extracts from this message all the information needed to initialize its internal data

structures (Status Table, Group View and Token Pool).

As seen in Figure 36, this message is composed of the ensemble of the data fields of

the Group View, Status Table and Token Pool messages. These sub-fields are separated by a

character.

60

GROUP VIEW

initparam \n TARGET... I VIEW GROUP ELEMENT ELEMENT
R NUMBER = SIZE

STATUS TABLE

SSIZ = ELEMENT U ELEMENT SP STATUS -I

TOKEN POOL

POOL TOKEN TOKEN TOKEN TOKEN TOKEN TOKEN
SIZE= TYPE : SUBJECT SI ORIGIN. TYPE S: SUBJECT SORIGIN #

Figure 36 Initial Parameters Message Internal Format

The process who assembles this message is the Join Process of the group host. It uses

the current Group View, Status Table and Token Pool.

Integrate Member is the process who disassembles the message and sends the sub-

fields to the data managers.

This message is used by the Join Process of the prospective new member to determine

that the joining procedure was successfully completed.

j. Join Request, Status Query and Status Report messages

Figure 37 shows a representation of these messages. Note that the only difference is

on the message type field.

These three messages have both external and internal forms.

In these messages, Target refers to the member to whom the message is addressed to.

and Originator refers to the element that initiated the message (i.e., the element who sends the

message). Both fields are encoded using the Element .Vamne format.

61

EXTERNAL FORMAT

ESERIAL \nMESSAGE \n MSAE\IAGE
pOIIAONUMBER ORIGINATOR TYPEIUMSERIAL MESAEY]j E IV1TARGET ORIGINATOR

INTERNAL FORMAT

MESSAGE TYPE
joinreqst MESSAGE TARGET ORIGINATOR

statusqry I TYPE -tstatusrpt

Figure 37 Join Request, Status Query and Status Report Message Formats

k. Update Status and Update View messages

The representation of these two messages is depicted in Figure 38.

UPDATE STATUS

Eupdstatus \II TARGET. SI TATUS #

UPDATE VIEW

Eupdatve~w \ ACTION_ SP TRE

ACTION

add
del

Figure 38 Update Status and Update View Message Format

These messages are used to signal a change in the corresponding internal data

structure.

In the case of the Update Status message, the Status field could have any of the values

listed in Table 5.

62

The possible Action values of the Update View message are listed in Figure 38.

1. Send Initial Parameters message

This message is sent by the Commit Processor to the Integrate Member process,

requesting it to assemble the Initial Parameters message to the specified target (which is the joining

element).

Figure 39 shows a graphical representation of this message.

Esndinipar: n TARGET #1

Figure 39 Send Initial Parameters Message Format

m. View Request, Status Table Request and Token Pool Request messages

All these messages are similar in format, in the sense that they all have an empty data

field. They are 'action' messages, i.e., the information carried by the message is contained in its

own type.

A collective representation is shown in Figure 40.

MESSAGE TYPE

viewreqst MESSAGE

statreqst TYPE #

tokpreqst

Figure 40 View Request, Status Table Request and Token Pool Request Message Format

n. Start Timer and Timeout messages

These messages are exchanged between the Status Monitor and the Timer sub-

processes, and between the Join Processor and Join Timer processes.

63

Figure 41 shows a graphical representation of the messages.

MESSAGE TYPE IACTION
starttimer MESSAGE n ACTION # Jpad
timeout__ TYPE tqry

Figure 41 Start Timer and Timeout Message Format

64

IV. IMPLEMENTATION ON UNIX-BASED MACHINES

In this chapter, we discuss the issues related to the implementation of the protocol on UNIX-

based machines. The current implementation was developed over a local area network (Ethernet)

of SUN workstations, running SunOS 4. 1, which is a Unix flavor that incorporates features from

both BSD and System V network and inter-process communication facilities.

A. COMMUNICATIONS LAYER

1. Network Access Protocol

Communication links to/from the application are exclusively intra-host, while different

members can reside in one or more hosts. Different members can belong to hosts in a single LAN

or they can spread over a WAN.

Communication ,. ithin an element and between elements of a group has to be reliable and

delivered in a strict first-in-first-out order, as required by the protocol.

All these characteristics suggest some desired features for the MIP design, namely: a

consistent Application Program Interface (API), usable across different network configurations,

and adaptable to the distinct classes of links, a minimum of communication links, in order to

preserve resources; availability of the group member's address must be available to newly formed

elements.

To satisfy these constraints, we used the 4.3BSD implementation of sockets to implement

all communication links. The Berkeley socket interface is widely available and constitutes a de

facto standard, making this implementation highly portable. Links between elements are

established using the Internet Domain Protocol to allow transparent communication across

networks. Links between processes of an element are implemented with UmA Domain Protocol,

which is a simplified version of the Internet Domain Protocol. Apart from the link formation

process, the access process is similar for both protocols, making the coding process relatively

uniform.

65

The other possible choice is System V TLI interface. This is a more recent standard, that

follows the OSI layered architecture model. Being a newer standard, it is currently not as popular

as BSD sockets, but is expected to become dominant in the future. Since these two interfaces have

a similar programing interface structure, as seen in Table 6, it would be relatively easy to port an

Table 6 COMPARISON OF SOCKETS AND TLI (ADAPTED FROM [20])

ProcessAction Socket TLI
Personality

Server allocate space talloc0

create endpoint socket() topen()

bind address bindo t_bindo

specify queue listen()

wait for con- accept() tlisten0
nection

get new fd topen()
t-bind()
t_accepto

Client allocate space t_allocO

create endpoint socket() topen()

bind address bindo tbindO

connect to connect() tconnectO
server

transfer data reado read()
write() write()
recvO trcvO
send() tsndO

datagrams recvfromo t_rcvudata()
sendto() t_sndudata()

Common terminate closeO t_close()
shutdowno tsndrel0

t_snddis()

application written in one of them to support the other. The current implementation of the protocol

66

is designed using a structured approach, in which access to the network interface is hidden in the

lowest level software layer that concentrates the majority of the standard-conversion related issues.

a. Inter-member communications

Having settled for the BSD socket interface for all communication links, and given

that the protocol must use Internet based hosts, thus utilizing the TCP/IP protocols to access the

network, a decision had to be made concerning the type of transport layer interface to use.

TCP/IP provides two transport layer protocols: TCP and UDP.

TCP, also referred to as TCP/IP, implements a connection-oriented, reliable, full-

duplex, byte-stream service for message delivery [201.

UDP, also known as UDPfIP, on the other hand, provides a connectionless, unreliable

datagram service [201.

Table 7 summarizes the characteristics of both protocols.

Table 7 COMPARISON OF FEATURES FOR UDP AND TCP (FROM (201)

UDP TCP

connection-oriented no yes

message boundaries yes no

data checksum opt. yes

positive ack. no yes

timeout and rexmit no yes

duplicate detection no yes

sequencing no yes

flow control no yes

Apparently, TCP would be the first choice for our inter-member communications

(those that have to travel across the network), since it provides reliability, and also ensures FIFO

message delivery. Unfortunately, if such a connection is established, and one of the end-points

67

hangs in the middle of the communication process, it is possible that the other end-point would

hang also, without possibility of recovery using the regular access mechanisms.

UDP datagrams are inherently unreliable (that is, they might not be delivered at all.

delivered after an arbitrary delay, or even delivered in multiple copies). This means -hat it is

necessary to add an extra mechanism to the FIFO Channel LAyer, that provides the reliability and

fifo ordering to messages delivered. This mechanism was implemented as described in Chapter HI.

The main benefict of the additional overhead is that UDP totally decouples the communicating end-

points, making the message exchange asynchronous, and isolating failures such that failure of one

end-point would not bring the other one down. This is a crucial property for the MP

implementation, since member failures constitute central events, and have to be confined to the

affected member only.

b. Intra-member communications

Sockets provide an Unix-domain protocol, that is restricted to inter-process

communications within a single Unix system (typically at the host level). This protocol has an

access interface in all respects similar to the Internet-domain version. It also provides a choice

between connection-oriented and connectionless interface. Unlike the Internet domain version,

both these interfaces are considered reliable.

The connection-oriented Unix protocol provides flow control, while the

connectionless protocol provides datagram delivery without any flow control. Since it is possible

for a datagram client to send data so fast that buffer starvation can occur, it is recommended that

only connection-oriented Unix domain protocol be usea [201.

The problem of an end-point tying a connection in the case of a failure, is not relevant.

because such a failure has to bring the entire element down anyway.

2. Socket Access Abstraction

To encapsulate all socket access issues, and thus delivering a higher level interface to the

message handling process. a toolbox was developed and access to socket facilities restricted to

entries in it. This toolbox is called 'SOCUTIL.C' and is listed in the appendix. Message handling

68

functions wvere also developed, and are intended to be used in close connection with these socket

access routine,,. These message handling-, functions are grouped on a toolbox named

a. Unix-domain socket access

All processes in this MP use a standard sequence of calls to establish a working unix-

domain ,ocket where incoming messages are received and responses are transmitted back. ,khen

applicable. This sequence is exemplified in Figure 42

I -strcpv~socpath. L'NIXSTRTM\PL):
2 mktemp~socpathL-
3 socfd = create UN(socpath),
.4 listen(socfd,5);
§ den = sizeof(caller):

6 newsoctd = accept(soctd. (struct sockaddr*)&caller. &clenL-
7 rcv mselen = read ms gmew soc fd. &msg. eom),

19 txmsglen = writemsgi(newsocfd. msg. rnsglen;:
10 close) newsocfd);

12 close(socfd):.
13 unlink socpath):.

Figure 42 Sequence of Calls to Establish a Workin.g Unix-domain Socket

Lines I and 2 gYenerate an unique pathname that will be u-sed to create the socket.

I.nix-dornain sockets are implemented in the OS kernel as file systemn entries. and so the% haxe

real' file names, (actually they appear in the file system as a zero-size fil) UNIXSTRTMPL i

a filename template ot the form '/tmp/so.XXXXXX'. where the Xs represent w~ildcards, that arc

filled in b% the operating system. Note that the size ot this string has to be tixed to 14 character,

due to an OS g litch [201.

Line 3 calls a function on *SOCUTIL.C' that creates the socket and return, a fI-lt

Jescripior that Is used as an handler. in the ;arne w.av as for a regular file.

Line 4 establishes a queue that stores, incoming mes!sages, in a fifo order. This allokk

lor the process to receive inessages in an asynchronous, way.

Line 5 blocks the execution waiting for an incoming message to arrive at the socket.

When this happens, a copy of the socket, where that one message is ready to be read is returned.

The original socket is made available to accept more messages, without interfering with the

processing of the current message.

Lines 6 and 8 perform the reading and writing of messages, respectively, to this new

socket, by calling a pair of functions from "MSGUITL.C'.

The block of code that includes lines 5-9 is typically run in a closed loop, waiting for

new messages, and servicing them. This makes the process than runs this code a server, in the

socket message exchange process.

Lines 1 land 12 illustrate the way a socket attached to a well known location is to be

discarded. The file descriptor has to be closed, and the file system entry has to be removed

(unlinked).

The sequence of calls used to establish a connection with a socket of another process

is illustrated in Figure 43.

I newsocfd.= connectUN(rmtsocpath);
2 txmsglen = writemsg(newsocfd, txmsg, txmsglen);
3 ...
4 rcvmsglen = readmsg(newsocfd, &rcvmsg, eom);
5 close(newsocfd);

Figure 43 Sequence of Calls to Connect to a Remote Unix Socket

Line 1 calls a function of 'SOCUTIL.C' to create a temporary socket where the

message exchange takes place. The filename of the remote socket has to be known to the calling

process.

Lines 2 and 4 perform the message writing and reading to/from the socket.

Once the message is completely processed, the new socket is no longer needed. anc

should be discarded (line 5).

70

b. Internet-domain socket access

Although none of the processes of the NIP uses exclusively Internet-domain sockets

to communicate with other processes, the access sequences for this situation are described. Part of

these sequences will be used by the 'FRONT' and 'BACK' subprocesses when operating the

Internet ports.

To establish a socket where messages are receiveand, if applicable, where responses

are sent to, the sequence of calls listed in Figure 44 is used.

1 IPport = htons(O);
2 socfd = createUDP(&IPport);
3 rcvmsglen = recmsg(socfd, &rcvmsg),
4 ...
5 txmsglen = senmsg(txmsg, txmsglen, lPaddr, IPrmtport);
6 ...
7 close(socfd);

Figure 44 Sequence of Calls to Establish a Working Internet Socket

Line 1 establishes the IP port to be used by the socket. This could be a non-zero value.

in which case the given number would be used. If the port number is set to zero, the operating

system will provide one available port.

Line 2 creates the socket and attaches it to the specified IP port. The actual IP port

where the socket is attached is returned. This is used to capture the port when it is assigned by the

OS (i.e., when a zero port was specified).

Lines 3 and 5 perform the message writing and reading, using functions from

'MSGUTIL.C'. This block is typically executed in a closed loop, receiving and servicing incoming

messages. Note that recinsgO is a blocking call (i.e., it blocks the process execution until a message

arrives at the port).

To connect to a remote port, and send a single message, the sequence of actions

depicted in Figure 45 is to be taken.

Note that since the Internet port uses datagrams (it works with UDP), and considering

that it is not known if the receiver is operative, it does not make sense to read a message in response

71

I port = htons((u-short)rmtport);

2 senmsg(msg, msglen, IPaddr, port);

Figure 45 Sequence of Calls to Connect to a Remote Internet Socket

using the same port. To receive a response, this should arrive at the local well-known port (Figure

44).

c. Multi-port socket access

It is possible to mix both Unix-domain and Internet-domain sockets in the same

process. This allows us to create multi-port processes that receive messages in any of the open

sockets, regardless of their type, and regardless of the order of arrival of messages.

FRONT and BACK sub-processes use this facility to provide the interface for

messages that have to cross the boundary of a given element.

Figure 46 lists the sequence of actions to create a multi-port facility.

Lines 1-6 create a socket for each port. Lines 7-9 prepare a flag that signals which

ports are to be read (in this case both ports). Line 10 blocks execution until one of the ports recei, I's
a message. There are no ordering or sequencing constraints on the arrival of messages at any of the

set ports.

Line 11 determines if the socket that has a message is the Unix socket. Lines 12- 16

process the incoming message.

Line 17 determines if the socket that has a message is the Internet socket. Lir. '18-

20 process the incoming message.

The complete listings for FRONT and BACK subprocesses are presented in the

appendix. These processes use functions available in another toolbox, 'FIFOUTIL.C'. This toolbox

includes functions that implement the token queue used in FRONT to serialize outgoing tokens, as

explained earlier, during this subprocess specification.

72

/*create Unxpr

mktemp~soc path),
3 unsocfd = create UN (soc path):

I isten(unsocfd.5),
/~create Internet port *

5IPport = htons(O);
6IPsocfd = create UDP(& IPport);

/* set desired ports to be read *

7 FD_ZERO(&fdread):
8 FDSET(unsocfd, &fdread)-;
9 FDSET(IPsocfd. &fdread)-,

/* wait for any, of the ports to receive a message ~
10 select(32, &fdread. NULL. NULL. NULL)
11 if(,FDISSET(unsocfd, &fdread)){

I* Unix socket ready */0
12 dlen = sizeof(caller);
13 newsocfd =accept(unsocfd, (struct sockaddr*)&caller. &clen):
14 rcvmsglen = readmsg(newsocfd, &msg, eom);
15 ..
16 txmsglen = write msg(newsoc fd, ms-, msglen);
17 close (newsocfd);
18 if(FD_ISSET(IPsocfd, &fdread))(

/* Internet socket ready */
19 rcvmsglen = recmsg(IPsocfd, &rcvmsg):.
20 ..
21 txmsglen = senmsg(txmsg. txmsglen. IPaddr. IPrmtportfl4
22..
23 close(unsocfd);
214 unlink(socpath);,
25 close(IPsocfd);

Figure 46 Sequence of Actions to Create a Multi-port Facility

B. APPLICATION INTERFACE AND HIERARCHICAL STRUCTURE

Fig2ure 9 shows that there is a connection from the application to the MP instance. This

connection represents the action of creating and invoking an instance of the MP on the local host.

There is another connection, in the case a communication link, that is used to deliver the current

group view from the MP instance to the application.

The hierarchical program execution structure is presented in Figure 47.

73

APPLICATION

Sforko
execipO

MAINPROC J
forko
execlpo

forkO forkO
execdpO execipo

BACK+ I

FRONTN

AGREEMENT
,PROCESSOR.

GROUP VIEW Y
M M•IAER

STATUS TABLE
MANAGE

Figure 47 Hierarchical Program Execution Structure

The application creates a socket where it is going to receive the latest group view from the MP

instance. Then it executes afork() system call, in order to create a copy of itself (a child process).

running concurrently. The child process executes then an execlpO call that transfers control to the

program 'MAINPROC', passing it the name of the group that the newly created element is

supposed to join (or initiate), the list of sites where to search for existing members, and the address

of the socket where it wants to receive the group view. The original program (i.e.. the parent

process) is still executing the application, and it monitors the socket for incoming messages from

the MP.

74

'MAINPROC' is the process responsible for the initialization of the MP instance. It creates

all sockets. initializes them and executes a succession of fork() and e(reclpO calls, thus starting all

processes of the MP. Each new process receives, in its invoking command line argument list, the

addresses of all sockets it needs to contact during its life cycle, and all other relevant information

(such as the complete element name of the current MP instance, the name of the group, the list of

sites to search, etc.), in an as-needed basis.

To test the creation process, and the interaction of the application and the MP instance, an

example application program was created, and named 'SIMPLEAPP.C'. The source code listings

of 'SIMPLEAPP.C' and". AINPROC.C' are presented in the appendix.

A mechanism to allow the application to force the shutdown of the element is provided, with

the used of system signals. The same mechanism is used by the MP to inform the application of a

failure or departure.A failure represents a crash of one or more processes, or an internal error

condition. A departure occurs when the member is still fully operational but was assessed as failed

by the group, and thus departed from it. In this situation the member receives the agreement token

for its own departure, recognizes it and shuts itself down in a benign way.

75

V. PERFORMANCE AND EXTENSION ANALYSIS

In asynchronous distributed environments, the number of messages required to complete an

action indicates the cost in terms of response time and system resources. In controlled

environments (such as a single local area network (LAN)), it is possible to exploit the low-level

features such as hardware multicast to reduce the message complexity. Nonetheless, for portability

and scalability reasons, such features are not integral part of the basic software implementing the

protocol. While such features can always be used for performance tuning, the basic protocols must

be analyzed in terms of the number of point-to-point messages.

In this chapter, message complexity for the decentralized approach of the proposed MP is

compared with that reported in [5] for a centralized approach to the GMP. For the stated reason, the

analysis given below assumes only point-to-point messages (no hardware multicast). First, the

complexity for a single departure is given for a group spread over a single LAN (see Figure 48).

then for a group spanning several LANs, spreading over a wide area network (WAN) (see Figure

49). The worst-case of a string of departures is then considered. Scalability issues are discussed in

close connection with the results obtained.

A. MPOVER A LAN

Let there be it members in the group depicted in Figure 48, before a single departure.

In [5], when this departure is not that of the coordinator, the MP requires one message for

detection of the faultv status, and (n-2) messages for each of the exclude, response and comnmit

rounds. Thus a total of (3n-5) total messages are required. By using a compressed update, this is

reducible to (2n-3). When the coordinator itself departs, this protocol requires one message for

faulty status detection, and (n-2) messages for each of the rounds for interrogation, response.

proposal, response, and commit.

In contrast, the proposed MP requires (n-1) messages for both the agreement and coiftlit

phases, and an extra message to send the token pool, giving a total of (2n- 1) messages. Since there

is no centralized manager, all departures have the same cost.

76

Failed member Coordinator
(centralized MP)

Logical ring
(decentralized MP)

Figure 48 MP Over a Single LAN

For a join, the centralized protocol still requires (3n-5) messages, whereas the decentralized

MP may require (2n+3) messages in the best case (one join request message, it for both join agree

and join commit, one token pool, and one initial parameters message), and (3n+2) messages in the

worst case (same as best-case plus n-I join request tokens). The best case occurs when the joining

member locates the ring host, and sends it the join request message.The worst case occurs when

the join request message is sent to the clockwise neighbor of the host, and so there is a join request

token circulating over the ring until it reaches the host.

Table 8 summarizes these results.

Table 8 MESSAGE COST COMPARISON

Centralized Protocol
Decentralized Protocol

Basic update compressed update

Departure (3n-5) (2n-3)
(non-coordinator)

(2n- I)
Departure (5n-9)

(Coordinator)

Join (3n-5) - (2n+3) to (3n+2)

77

It is to be noted that, in the centralized MP, the coordinator has to maintain communication

with all the members throughout the reconfiguration process, thus penalizing one single element

of the group, and making the algorithm asymmetric. In the decentralized MP, all members must

periodically monitor their anti-clockwise neighbors. This results in a spreading of the constant

monitoring overhead, and a quasi-symmetric algorithm (the exception is for the host of the ring

during the join process, who has a special responsibility, but not an extended functionality).

When the centralized MP is used, it will be invoked when some higher level process or

multicast attempts to communicate with a failed member. When this attempt fails, the coordinator

is informed and the MP is invoked for a consistent change to the membership at all operational

members. Until that change takes place, the application process is monitored.

In the centralized MN, the constant monitoring makes the latest membership view available as

a service. This effectively decouples the membership service from the higher level of software

which uses the MP services. This constitutes a significant benefit of this approach.

Considering the costs of the protocol execution, we can conclude that the proposed

decentralized protocol has good scalability, since the cost increases linearly with the number of

elements, and at a lower rate than the centralized approach.

B. MP OVER A WAN

Consider a group that is spread over multiple LANs connected by a gateway, as pictured in

Figure 49.

Typically, messages between members in different LANs will take longer than messages

exchanged within a LAN, since the gateway is a shared resource and may have to perform message

format transformation and routing functions.

Let k out of a total of n members be in a LAN that also includes the coordinator. For a

departure of a member other than the coordinator, or for a join, the centralized MP requires 3(n-k)

messages across the gateway. When the coordinator departs, 5(n-k) messages must cross the

gateway.

78

Coordinator
(centralized MP)

Logical ring IGATEWAY

(decentralized MP)

L.AN2

Failed member

Figure 49 MP Over a WAN

The proposed decentralized NIP offers significant savings in this case: only 4 messages must

cross the gateway for a departure, and 6 for a worst-case join. The two status-query/response pairs

of messages that must cross the gateway for periodic monitoring, can have their period and time-

outs tuned to their particular situation.

We can conclude that the ring configuration offers significant benefits for operation over a

WAN. These benefits are even more evident when the number of gateways increases.

79

C. STRING OF MEMBERSHIP CHANGES

When successive reconfiguration attempts are interrupted by a string of departures, the

centralized MP has a message complexity of 0(n2). The proposed MW also requires 0(n2) messages

as shown below.

The worst case occurs when members fail successively just prior to propagating the commit

token for which they had generated the agreement token. For the first departure. there will be (n- 1)

agreement messages. The commit phase for this departure is carried out by the clockwise neighbor

of the agreement initiator (since it failed just prior to propagating the commit token), costing 01-2)

commit messages. In addition, a token pool message is required. This process is repeated unt'i the

ring reduces to a single member. Thus the total cost is

n-2

2 [(n-i) + (n-i-) +1 -1 = 2- 3
i..I

It is emphasized that this MN allows any number of departures, provided that there is no

network partition, whereas the centralized MP imposes the condition that less than half the

operational members fail.

80

VI. CONCLUSIONS AND RECOMENDATIONS

In this thesis, a group membership protocol for maintaining membership information required

by virtually synchronous process groups operating in asynchronous environments is described. It

tolerates continuous changes to the membership, by ordering the members of a group using the

concept of a logical ring. In this protocol, identical processing is required to process joins as well

as departures. The change detection responsibility is evenly distributed among all the members of

the group. This enables the elimination of any need for centralized responsibility. By ordering all

commits according to the rank of a member, as defined by its position in the logical ring, the

protocol correctness has been proven.

Joins and departures can be interleaved, since they are processed identically. Since there is no

centralized responsibility, the overhead for committing a change is constant at (2n- 1), where n is

the group size. No special facilities such as broadcast messages, ordered access, synchronized

actions, and even reliability and FIFO delivery by the network, are required. The protocol

implementation delivers the reliable FIFO network abstraction as required by the core protocol. It

is emphasized that, in asynchronous environments, the reponsiveness of a MP can only be

determined by the number of messages required. Strict time-bounds cannot be derived unless the

network places such bounds on the individual message delivery. While total message cost is lower.

the message overhead of the proposed NP is shown to be superior to [5], which is the only otrier

group membership protocol that uses a fully connected network of FIFO channels that the author

is aware of. It also enables complete decour'ing of the membership service from the higher level

software desirable for scalability of distributed applications (3].

Unlike the centralized approach, this MN does not make any majority-based decision.

Therefore, if the network partitions (in violation of the initial assumptions, but corresponding to

common real-world situations), it is possible that a group will remain operational in each partition.

This is in contrast to the centralized MP which ensures that the group remains operational only in

the partition with majority. Relaxing this no-partition network assumption is one of the future lines

of work that could benefit the proposed protocol. One possible approach is to implement a method

81

to reconcile the application state when the partition ceases. This leads us to another desired

extension of the protocol, to include merging of two autonomous groups.

Since client-server computing has become increasingly popular, it is desirable to study the

adaptability of the proposed NIP to such an environment, where client members join and depart

frequently. Fully incorporating all clients in the group would penalize the overall r,-sponsiveness.

and would have the undesirable side-effect of making all client-server sessions sensitive to each

other (clients would be aware of each other, and a client failure would invoke a reconfiguration

process involving all active clients). An alternative, and apparently better ap'-oach would be to

create a core server group, and as many virtual groups as clients, where each virtual group would

include all members of the core seiver group and a single client. Members of the server group

would be aware of all virtual groups and would incorporate the methods to correctly reconfigure

the groups in a transparent but still cons'-tent way.

For more general applicability of this protocol, such as over different possible network

configuration and combinations, a hierarchical distribution of members might prove to be a more

effective way of configuring the basic ring. In this kind of configuration, each cluster on a particular

hierarchical level would run an autonomous MP, that would interface with all others at the same

level. This is particularly well suited to large WANs, where different sections have an

homogeneous internal composition, but are dissimilar from each other, and/or rely on slow of

costly interconnections.

Work can also be done to incorporate mechanisms capable of using the facilities prcvided b,.

synchronous environments, mostly present in real-time applications, where efficiency is a major

concern.

The current implementation is based on the socket interface provided by the Berkeley Unix

implementation (4.3BSD). The programs were developed using modular methodology, and a

machine independent approach, thus making it highly portable within Unix flavors that support the

socket interface. It would be desirable however, for portability issues, to develop a multi-standard

version that would support ATT's Unix System V Release 3 TLI interface, as well as other curlent

and possibly future available standards.

82

LIST OF REFERENCES

[1] Flaviu Cristian "Agreeing on who is present and who is absent in a synchronous dis-
tributed system," in Proceedings of the 18th International Conference on Fault Tol-
erant Computing, Tokyo. Japan, pages 206-211, 1988.

[2] Flaviu Cristian, "Understanding Fault-Tolerant Distributed Systems," in Communi-
cations of the ACM, pages 57-78, February 1991.

[3] Kenneth Birman, Andre Schiper and Pat Stephenson, "Lightweight causal and atom-
ic group multicast," in ACM Transactions on Computer Systems. pages 272-314,
August 1991.

[4] Kenneth P. Birman, "The process group approach to reliable distributed computing,"
Technical Report TR91-1216, Cornell University Computer Science Department,
Ithaca, NY, July 1991.

[5] A. Ricciardi and K. Birman, "Using process groups to implement failure detection in
asynchronous environments," in ACM Symposium on Principles of Distributed
Computing. Montreal. Quebec. Canada. pages 341-353, August 1991. Also avail-
able as TR91-1188, Dept. of Computer Science, Cornell Univ.

[6] S. B. Shukla. F. Pires and D. Raghuram, "Design Implementation and Performance
of a Decentralized Group Membership Protocol for Asynchronous Environments
Using Ordered Views," Technical Report NPS-EC-93-006, Naval Postgraduate
School, Monterey, California.

[7] Anita Borg, W. Blau, W. Graetsch, F. Herrmann. and W. Oberle, "Fault Tolerance
Under Unix," in ACM Transactions on Computer Systems. pages 1-24, February
1989.

[8] Bernd Walter, "A Robust and Efficient Protocol for Checking the Availability of Re-
mote Sites," in Proceedings of the Sixth Workshop on Distributed Data Management
and Computer Networks, Berkeley. California, pages 45-68, February 1982.

[9] Kenneth P. Birman, Robert Cooper and Barry Gleeson, "Design alternatives for pro-
cess group membership and multicast," Technical Report TR91-1257 (revision of
TR91-1185, Jan. 1991), December 1991.

[10] Shridhar B. Shukla and Devalla Raghuram, "Group Membership in Asynchronous
Distributed Environments Using Logically Ordered Views," Technical Report NPS-
EC-92-009, Naval Postgraduate School, Monterey, California, September 1992.

83

[11] F. Jahanian and W. Moran Jr., "Strong, weak and hybrid group membership," in Pro-
ceedings of the Second Workshop on the Management of Replicated Data. Monterey.
California. pages 34-38, November 1992. Also available as Technical Report RC
18040 (79173) 5/28/92, IBM Research Division, T. J. Watson Research Center.
1992.

[12] L. Peterson, N. Bucholdz, and R. D. Schlichting, "Preserving and using context in-
formation in interprocess communication," in ACM Transactions onl Computer Svs-
tems. Montreal. Quebec. Canada, August 1989.

[13] M. J. Fisher, N. A. Lynch, and M.S. Paterson, "Impossibility of Distributed Consen-
sus With One Faulty Process," in Journal of the Association for Computing Machtin -
er', pages 374-382, 1985.

[14] Paulo Verissimo, Jose Alves Marques, "Reliable Broadcast for Fault-Tolerance on
Local Computer Networks," in Proceedings IEEE Ninth Symposi.um onl Reliable
Distributed Systems. Huntsville. Alabama, pages 54-63, October 1990.

[15] S. A. Bruso, "A Failure Detection And Notification Protocol for Distributed Com-
puting Systems," in Proceedings IEEE Conference on Di'trihuted Comptutinq Sxý-
tems, pages 116-123, 1985.

[16] L. E. Moser, P. M. Melliar Smith, and V. Agrawala, "Membership Algorithm For
Asynchronous Distributed Systems," in Proceedings of the Eleventh International
Symposium on Distributed Computing Systems, 1991.

[17] J.-M. Chang and N. F. Maxemchuk, "Reliable Broadcast Protocol," in .C.¶I Tra,,.
actions on Computer Systems, pages 251-273, 1984.

[18] K. P. Birman and T. A. Joseph, "Reliable Communications in the Presence of Fail-
ures," in ACM Transactions on Computer Systems. pages 47-76, August 1987.

[19] Jean Walrand, Communication Networks: A Firqt Course, Aksen Associates, 1991

[20] W. Richard Stevens, Unix Network Programming, Prentice Hall, 1990.

84

APPENDIX

* GROUP MEMBERSHIP PROTOCOL - SIMPLE APPLICATION

* This is an example application, that creates an instance of the *

* membership protocol. and receives from it the most current group
* view, when this changes.
* A mechanism for requesting the element shut-down is also *

* provided. This is accomplished with the following call: *

* kill(O, SIGALRM); *

* The application receives notice that the element has departed *

* by catching this signal (sent by mainproc) at function killelmnt0 *

* Writen by:Fernando J. Pires
* Last revision:9 Mar 1993

#include "gmp.h"
#include "socutil.c"

void killelmntO;

void main(argc,argv)
int argc,
char *argv[];
{

int aplsocun, newsoc, childpid, clen, msglen;
char *aplpath, *grollpname, *sitelist, *msg;

struct sockaddruncalleraddr;

85

DETERMINE INPUT ARGUMENTS (command line)

switch(argc){
case 1 :groupname = "groupO";

sitelist = (char*) NULL,
break;

case 2:groupname = argv[1];
sitelist = (char*) NULL;
break;

case 3:groupname = argv[1];
sitelist = argv[2];
break;

default: printf("usage: simpleapp [groupname [sitelist]J\n");
exit(- 1);

I

OPEN LOCAL SOCKET (where group views are received)

aplpath = UNIXSTRTMPL;
mktemp(aplpath);
aplsocun = createUN(aplpath);
listen(aplsocun,5);

ESTABLISH A SIGNAL HANDLER TO INTERCEPT
THE ELEMENT FAILURE SIGNAL FROM mainproc

signal(SIGALRM, kilelmnt);

86

EXECUTE GNP's MAIN PROCESS

if ((childpid = forko) =-1)

printf("Can~t fork\n");
else if (childpid == Q){/* child process *

execlp("mainproc". "mainproc", apipath, groupname, sitelist, (char*)NUJLL);
printf("Error executing mainproc\n'D;
exit(1);

EXECUTE LOOP TO RECEIVE UPDATED GROUP VIEWS

while ((newsoc. = accept(aplsocun, (struct sockaddr*) &caller_addr, &clen)) >= 0)
if((msglen--recmsg(newsoc. &msg)) <0){1

printf("APPLICATION: read error\n");
break;

msg[msgleniJ=NULL; /*turn me,ýsage into string *

printf("APPLICATION: received group view => II%sI1n",msg);

free(msg);
close(newsoc);

printf("APPLICATION: accept error~n");

/* Send signal to mainproc and to itself, requesting element shut-down *

kill(O. SIGALRM);

SIGNAL HANDLER THAT CATCHES ELEMENT DEPARTURE

87

void killelmnt()

I
printf("APPLICATION: mainproc has returned\n");

/* Terminate all running processes */
sleep(2); I* Allow time for mainproc to shut-down *
kill(O, SIGKILL);

88

* GROUP MEMBERSHIP PROTOCOL - MAIN PROCESS *

* This program is executed by the application, and spawns a *

* complete implementation of an element running the Membership Protocol *

* This program waits for a child to cease execution (meaning *

* that the element has or is to cease existence, and then releases all *

* resources to the operanting system. *

* It also catches signals from the application requesting the *

* element shut-down. *

* Example of code used by the application to run this program: *

"* /create unix socket where GroupViews are to be received// *

"* char*socpath; *

"* it socfd; *

"* socpath = UNIXSTR_TMPL;// Default path template H
"* mktemp(socpath);// Get unique file name *
"* socfd = createUN(socpath);// Create unix socket// *

"* listen(socfd,5);

*//fork and execute mainproc//
* if ((childpid = forko) == -I)
* printf("Can't fork\n");
* else if (childpid == 0){// child process *
* execlp("mainproc". "mainproc", socpath, grouppathname, sitelist,
* (char*)NULL);
* printf("Error executing front\n");
* exit(l);}

* Notes: sitelist is a string with host names, separated by
* '=' characters. Example: "sun2=sunl0=aditya=taurus"

* This list can be empty, in which case the local host *

* Gruopname is optional. If no argument is provided *

* it defaults to 'groupO'. *

89

"* Writen by:Fernando J. Pires
"* Last revision:9 Mar 1993

#include "gmp.h"
#include "socutiI.c"

void killelmnto;
/* these variables are common to 'mainproc* and '1ullelmnt'*
char *fpath, *bpath, *stmonpath, *stireppath, *timerpath;
char *joinppath, *intmblrpath, *ag1.ppaflh, *comppath;
char *gvmpath, *stmpath, *tpmpath. *aplpath, *grouppathnamye,

int marn(argc,argv)
int argc;
char *argv[];

int fsocudp, fso~un, bsocudp, bsocun;
int stmonfd, strepfd, timerfd, joinpfd, intmbrfd;
int agrpfd, compfd, gvmfd, stmfd, tpmfd;
char sfudp[MAXFD],sbudp[MAXFD],sfun[MAXFDI,sbun[MAXFDI;
char sstmon[MAXFD],sstrep[MlAXFD], stimer[MAXFD];
char sjoinp[MAXFD] ,sintmbr[M4AXFD] ,sagrp[MAXFD],
char scomp[MAXFD],sgvm[MAXFD],sstm[MAXFD],stpm[MAXFD];
u-short fport,bport;
char sfport[MLAXPORTI, sbport[MAXPORTII;
int childpid;
char my~name[MAXHOSTNAME+1], *ip~add&,
char my..addr[MAXLMTS IZE-s-1];
char *groupnme, *sitelist;
struct hostent*hptr;

90

ESTABLISH A SIGNAL HANDLER TO INTERCEPT
THE ELEMENT FAILURE SIGNAL FROM APPLICATION

signal(SIGALRM, killelmnt);

DETERM[INE ADDRESS OF CURRENT ELEMENT

if (gethostname(my~name, MIAXHOSTNAME) == 0)
printf("My name is %s\n",my~name);

else
printf("gethostname error\n"),

if (hptr=gethostbyname(my-name))
printf("Success, found %s , also known as %~"

hptr->h-name,hptr->h-aliases[0]);
else

printf("Host %s not found\n",my~naxne);

ip~addr = (char*) inet~ntoa(*((stIruct in..addr*)(hptr->hLaddr)));
printf ("My IP address is %s~n",ip~addr);

DETERMINE INPUT ARGUMENTS (command line)

switch(argc)
case 2:aplpath = argv[1];

groupname = "groupO",
sitelist = my-name,
break;

case 3:aplpath = argv[1];
groupname = argv[21;
sitelist = my-..namle;
break,

case 4: aplpath = argv[lI],
groupname = argv[2];

91

sitelist = argv[3];
break;

default: printf("usage: mainproc apisoc [groupname [sitelist II\n"),
exit(- 1);

printf("MAINPROC: start execution\n").
printf("MAINPROC: apisoc = %s, groupname = %s, sitelist =%s\n",aplpath. groupname,

sitelist).-
grouppathname = CALLOC (strlen(groupname)+6, char).
strcpy(grouppathname, "Atmp/");
strcat(grouppathname, groupname),

OPEN SOCKETS FOR ALL PROCESSES

/* open FRONT port UDP socket (an Internet Datagramn Socket) *

fport = htons(O);
fsocudp = createUDP(&fport);/* ask for an availabe port *
srmritf(sfudp,"%d",fsocudp,);
printf("FRONT: internet port => %,'d\n",ntohs(fport));
sprintf`(sfport,"%d",fport);
printf("\n");

/* open a FRONT port Unix Domain Stream socket *

fpath = UNIXSTR...TMPL;/* Default path template*/
mktemp(fpath); /* Get unique file name ~
fsocun = createUN(fpath);
listen(fsocun.5);
sprinff(sfun,"%d",fsocun);
printf("FRONT: unix socket path => %s\n",fpath);
printf('Nn");

/* open BACK port UDP socket (an Internet Datagrarn Socket) *

bport = htons(O);
bsocudp = createUDP(&bport),/* ask for an availabe port *
sprintf(sbudp,"%d'Xbsocudp);

92

pnintf("BACK: internet port => %d\n",ntohs(bport));
sprintf(sbport,"%d"Xbport);
printf("'n"D,-

/P open a BACK port Unix Domain Stream socket *
bpath = UNIXSTRTMPL;/* Default path template*/
mktemp(bpath); /* Get unique file name ~
bsocun = createUN(bpath),
Listen(bsocun.5).
sprintf(s bun, -%d-,bsocun),
printf("BACK: unix socket path => %s\n*',bpath');
printf("\n");

P~ open a STATUS MONITOR Unix Domain Stream socket ~
stmonpath = UNIXSTRTMPL,/* Default path template*/
mktemp(stmonpath);/* Get unique file name ~
stmonfd = createUN(stmonpath);
listen(stmonfd.5);
sprintf(sstmnon, "%d",stmonfd);
printf("STATUS MONITOR: unix socket path => %s\n".stmonpath);
printf('Nn"),

/* open a STATUS REPORTER Unix Domain Stream socket *
streppath = UNIXSTRTMPL;/* Default path template*/
mktemp(streppath),/* Get unique file name ~
strepfd = createUN(streppath);
listen(strepfd,5);
sprintf(sstrep "' .I",strepfd);
printf("STATUS REPORTER: unix socket path => %s\n"Xstreppath).

P* open a TIMER Unix Domain Stream socket ~
timerpath = UNIXSTRTMPL,/* Default path template */
mktemp(timerpath);/* Get unique file name ~
timerfd = createUN(timerpath);
listen(timerfd.5);
sprintf(stimer,"%d",timerfd);
printf("TIMER: unix socket path => %s\n".timerpath),

93

/* open a JOIN PROCESSOR Unix Domain Stream socket ~
joinppath = UNIXSTR_ TMPL./* Default path template*/
mktempojoinppath);/* C -t unique file name ~
joinpfd = createUNojoinppath);
listenojoinpfd,5);
sprintf(sjoinp,"%d-.joinpfd),
printf("JOIN PROCESSOR: Unix socket path => %s\n'Xjoinppath);
printf(C\n");

/* open a INTEGRATE MEMBER Unix Domain Stream socket *
intmbrpath = UNIXSTR_-TMPL;/* Default path template*/
mktemp(intmbrpath);/* Get unique file name ~
intmbrfd = createUN(intmbrpath);
[isten(intmbrfd,5);
sprintf(sintmbr. "%d'Xintmbrfd);
printf("INTEGRATE MEMBER: unix socket path => %s\n-,intmbrpath);
printf("\n");

/* open a AGREEMENT PROCESSOR Unix Domain Stream socket *
agrppath = UNIXSTRTMPL;/* Default path template*/
mktemp(agrppath);/* Get unique file name ~
agrpfd = createUN(agrppath);
listen(agrpfd,5);
sprintf(sagrp,%d".agrpfd);
printf('AGREEMENT PROCESSOR: unix socket path => %s\,n".agrppath).
printf('Mn");

/* open a COMM[IT PROCESSOR Unix Domain Streamf socket *
comppath = UNIXSTRTMPL;/* Default path template*/
mktemp(comppath);/* Get unique file name ~
compfd = createUN(comppath);
tisten(compfd,5);
sprintf(scomp. '%d'Xcompfd);
printf("COMM1T PROCESSOR: unix socket path => 7os\n",comppath),
printf("\n");

94

/* open a GROUP VIEW MANAGER Unix Domain Stream socket ~
gvmpath = UNIXSTRTMlPL,/* Default path template*/
mktemp(gvmpath);/* Get unique file name ~
gvmfd = createUN(gvmpath);
fisten(gvmfd,5);
sprintf(sgvni,*%d",gvmfd);
printf("GROUP V11- W MANAGER: unix socket path => %s\n".gvmpath);
printf(C\'\);

1* open a STATUS TABLE MANAGER Unix Domain Stream socket *
stmpath = UNIXSTRTMPL,I* Default path template*/
rnktemp(stmpath),/* Get unique file name ~
stmfd = createUN(stmpath);
Iisten(stmfd,5);
sprintf(sstrm,"%d".stmfd);
printf('STATUS TABLE MANAGER: unix socket path => %s\n",stmpath);
printf("\n")

/* open a TOKEN POOL MANAGER Unix Domain Stream socket *

tpmpath = UNIXSTR_-TMPL;I* Default path template*/
mktemp(tpmpath),/* Get unique file name ~
tpmfd = createUN(tpmpath).
listen(tpmfd,5),
sprintf(stpm,"%d"*,tpmfd);
pi-intf('TOKEN POOL MANAGER: unix socket path => %s~n",tpmpath),
printf("\n");

DETERMINE COMPLETE ADDRESS OF CURRENT ELEMENT

strcpy(my-addr, ip-.addr);
strcat(my~add&. ";"),

strcat(my-addr, sfport);
swrcat(my~addr. ";");

strcat(my...addr, sbport);
printf("My element address is II%sINf-,my~addr);

95

CREATE ALL PROCESSES

/* execute FRONT process *
if ((childpid = forko) I=-1

printf("Can't fork~n");
else if (childpid == Q){/* child process *

execlp('front", "front". sfudp, sfun, my-addr, streppath, joinppath. intmbrpath,
(char*)NIJLL);

printf("Error executing front\n");
exit(1); 1

/* execute BACK process *
if ((childpid = forko) =-1)

printf("Can't fork\n");
else if (childpid == 0){1/* child process *

execlp("back", "back", sbudp, sbun, my-addr, stmonpath, agrppath, (char*)NULL);
printf("Error executing back\n");
exit(1); I

/* execute GROUP VIEW MANAGER process *
if ((childpid = forko) == -1)

printf("Can't fork\n");
else if (childpid == Q)(/* child process ~

execlp("gvm", "gym", sgvm, my...addr, aplpath, grouppathname, (char*) NULL);
printf("Error executing gvm\n");
exit(l); I

/* execute STATUS TABLE MANAGER process *
if ((childpid = fork 0) == -I)

printf('Can't fork\n");
else if (childpid == Q){/* child process *

execlp("stm", "stm", sstm. (char*) NULL);
printf("Error executing stm\.n");
exit(l); I

1* execute TOKEN POOL MANAGER process *
if ((childpid = forko) == -I)

printf("Can't fork\n'D;
else if (childpid == 0){f/* child process ~

execlp("tpm", "tpm", stpm, (char*) NULL);
printf ("Error executing tpm\n");
exit(1); I

/* execute TIMER process *
if ((childpid = forko) I1

printf("Can't fork\n");
else if (childpid == O){/* child process *

execlp("timer". "timer", stimer. stmonpath, (char*) NULL).
printf("Error executing timer~n");
exit(1); I

/* execute STATUS REPORTER process *
if ((childpid = forko) == -1)

printf("Can't fork\n");
else if (childpid == Q){/* child process *

execlp("strep", "strep", sstrep. my-addr, tpmpath. fpath. (char*) NULL),
printf("Error executing strep~n'D;
exit(1); I

/* execute STATUS MONITOR process ~
if ((childpid = forko) ==-1)

printf("Can't fork\n");
else if (childpid == O){/* child process *

execlp("stmon". "stmon", sstmon. my-ad&., stmapath, gvmpath, agrppath, timerpath.
bpath. (char*) NULL);

printf('Error executing stmon\n").
exit(l);

/* execute JOIN PROCESSOR process *
if ((childpid = forko) == -1)

printf("Can 't fork\n");
else if (childpid == 0){I * child process *

97

execlp("joinp ", "Joinp", sjoinp, my-addr. stmpath, gvmpath, agrppath, intmbrpath.
bpath, fpath, grouppathname, sitelist, (char*) NULL);

printf("Error executing joinp~n");
exit(1),

/* execute INTEGRATE MEMIBER process *
if ((childpid = forko) =-I)

printf("Can't fork\n");
else if (childpid == Q){/* child process *

execlp("intmbr", "intmbr". sintmbr, my-addr, gvmpath, stmpath, tpmpath, bpath.
(char*) NULL);

printf ("Error executing intmbr\n");
exit(l), I

/* execute AGREEMENT PROCESSOR process ~
if ((childpid = fork()) == -1)

printf("Can't fork\n");
else if (childpid == Q){/* child process *

execlp("agrp", "agrp", sagrp, (char*) NULL);
printf("Error executing agrp~n");
exit(l);}

/* execute COMMIT PROCESSOR process *
if ((childpid = forko) == -1)

printf("Can't fork\n");
else if (childpid == Q){/* child process *

execlp("comp", "comp", scomp, (char*) NULL);
printf("Error executing comp\n");
exit(l); I

/* close all open files *
close(fsocudp);
close(bsocudp);
closeffsocun);
close(bsocun);
close(stmonfd);
close(strepfd);

98

close(timerfd),
close~joinpfd),
close(intmbrfd);
close(agrpfd).
close(compfd);
close(gvmfd);
close(stmfd);
close(tpmfd);

wait((int*) NULL). /* wait until one process exits ~

sleep(80);
printf("MAIN PROCESS: One child has returnedtn),

/* Remove Unix Domain socket links *
unlink(fpath);
unlink(bpath);
unlink(stmonpath);
unlink(streppath);
unlink(timerpath);
unlinkooinppath);
unlink(intmbrpath);
untink(agrppath).
untink(comppath);
unlink(gvmpath);
unlink(stmpath);
unlink(tpmpath);
unlink(aplpath);

/* Signal the application that the element has ceased existence ~
kill(O, SIGALRM);

SIGNAL HANDLER THAT CATCHES ELEMENT DEPARTURE

99

void killelmnt()

I
printf('MAINPROC: application has requested shut-down\n");

/* Remove Unix Domain socket links *
unlink(fpath);
unlink(bpath);
unlink(stmonpath);
unlink(streppath);
unlink(timerpath);
unlinkojoinppath);
unlink(intmbrpath).
unlink(agrppath);
unlink(comppath);
unlink(gvmpath);
unlink(stmpath);
unlink(tpmpath);
unlink(aplpath);
remove(grouppathname);
free(grouppathname);

100

BACK PORT MANAGER

* This program is executed by mainproc.

*Writen by:Fernando J. Pires
*Last revision:8 Mar 1993

#include *'gmp.h"
#include "msgutil.c"
#include "socutil~c"
#include "fifoutil.c"

int main(argc,argv)
int argc;
char *argv[];

int sockudp, sockun, newsoc;
int msgtype, dlen, msglen;
int expectsrnbr = 0;
char *sto, *agrp, *my-addr, *msg;
char *acwnbr, *target, *originator, *extmsg;
struct sockaddr-ununcaller -addr;
fd-set fdread;

printf('BACK: start execution\.n");

if (argc ==6)

sockudp = atoi(argv[1]);
sockun = atoi(argv[2]);
my~addr = argv[3];
stmon = argv[41;
agrp = argv[5];

101

else{
printf("Usage: BACK sockudp sockun my-addr stmon agrp\n'D:
exit(1);

/* Initialize acwnbr with a null string ~
acwnbr = CALLOC(l,char);

while (TRUE) {
FDZERO(&fdread);
FDSET(sockudp. &fdread);
FDSET(sockun, &fdread);

* Wait for a connection from a client process, either at
* the Internet or Unix socket.

if (select(32, &fdread, NULL, NULL, NULL) <O0){
printf('BACK PORT: select error\n'D";
exit(1);

if (FDISSET(sockun, &fdread)){I* Unix socket *
dlen = sizeof(uncaller_addr);
if ((newsoc = accept(sockun, (struct sockaddr*) &uncaller-addr, &clen)) <Z 0)

printf("BACK unix: accept error\n");
exit(1);

if((msglen--recmsg(newsoc, &msg)) < 0)(
printf(" BACK unix: read error\n");
exit(l);

msgllmsglen] =NULL; /*turln message into string *

printf("BACK unix: received => II%sIM~",msg);

102

/* Determine which message was received *

msgtype = in-msgjtype(msg);
switch (msgtype){I

case STATUS QRY: free(acwnbr);
acwnbr = getjtarget(msg);

printfC"BACK unix: acwnbr = II%sIN1",acwnbr),
case INITPARAM:
case JOINREQST: target = get-target(msg);

extmsg = int-2ext(msg. 0, my~addr);
send_msg...front(extmsg, target);
free(target);
free(extmsg);
break;

default: exit(1);

free(msg);
close(newsoc);

if (FD-ISSET(sockudp, &fdread)){(/*Internet socket*/
if ((msglen--recmsg(sockudp,&msg)) < 0)1

printfC'BACK internet: receive error\n");
exit(l);

msgjlmsglen] =NULL; /*tur1n message into string ~

printf ("BACK internet: received => 1I%sIMn",msg);

originator = get-originator(msg);
if (strcmp(acwnbr,originator) == j

1* accept msg only from acwnbr ~

/* Determines which message was received *

msgtype = ext..msg-type(msg),

103

switch (msgtype){
case STATUS RPT: send_msgjin(msg, stmon),

break;
case TOKENTOKN:if(expectsrnbr == get -sr....nbr(msg))

send msg..in(msg, agrp);
send-ack(msg, my-addr, acwnbr);
expects rnbr += 1;

break;
case TOKENPOOL:send-msgjln(msg, agrp),

send-ack(msg, my-addr. acwnbr);
expectsrnbr =ge-sr-nbr(msg)+ 1;
break;

default: exit(1);

free(originator),
free(msg);

104

FRONT PORT MANAGER

* This program is executed by mainproc.

Writen by:Fernando J. Pires
Last revision:8 Mar 1993

#include "gmp.h"
#include "msgutil.c'
#include "socuti1.c"
#include lfifoutil.c"

int main(argc,argv)
int argc;
char *argv[I;

int sockudp, sockun, newsoc,
int msgtype, clen. msglen;
int queue-counter=-O. expectsrnbr=-O. srnbr=-O;
char *cwnbr, *topmsg, *msg, *extmsg;
char *my-add&, *strep, *jojnp, *intrbr;
struct sockaddr-ununcaller -addr;
fd-set fdread;
queue qu;
queue *msgqueue = &qu;

printf("FRONT: start execution\n");

if (argc ==7)f
sockudp = atoi(argv[1]);
sockun = atoi(argv[21);
my...addr = argv[3];
strep = argv[4];

105

joinp =argv[5],
intmbr = argv[6];

else{
printf("Usage: front sockudp sockun my~add& strep joinp intmnbrn");

exlt(I),

/* Initialize msgqueue *
qu.tail = qu.head = NULL;

/* Initialize cwnbr with a null string ~
cwnbr = CALLOC(1,char),

while (TRUE) {
FDZERO(&fdread);
FDSET(sockudp, &fdread);
FDSET(sockun, &fdread);

"* Wait for a connection from a client process, either at
"* the Internet or Unix socket.

if (select(32, &fdread, NULL, NULL, NULL) <O0)(
printf("FRONT PORT: select error~n");

exit(l);

if (FDISSET(sockun, &fdread)){/* Unix socket ~
dlen = sizeof(uncaller addr);
if ((newsoc = accept(sockun, (struct sockaddr*) &uncaller-addr. &clen)) <0)

printf("FRONT unix: accept error'.");
exit(1);

106

if((msglen--readmsg(newsoc,&msg,"#')) <O0){
printf(" FRONT unix: read error~n");
exit(1);

msg[msglen] =NULL; /*turn message into string *

printf("FRONT unix: received => II%sll\n".msg);

/* Determine which message was received ~

msgtype = in~msgjtype(ms2);
switch (msgtype){

case TOKENPOOL:flush-queue(rnsgqueue),
case TOKENTOKN:extmsg = int_.2-ext(msg. srnbr, my addr);

enqueue(msgqueue,extmsg);
free(extmsg);

srnbr++;
queue-counter++;
'Creak;

case STATUS RPT: free(cwnbr);
cw~nbr = get-target(msg);
ext.Msg = int-2 ext(msg, 0, my-..addr).
send-msg-back(extmsg, cwnbr);
free(extrnsg);

break;

default:exit(1);

free(msg);

if (queue-counter !=0){

get~queue~head(msgqueue,&topmsg);
send-msg...back(topmsg, cwnbr);
expectsrnbr = get...sr...nbr(topmsg);
free(topmsg);

close(newsoc);

107

if (FDJISSET(sockudp, &fdread))/* Internet socket*/(
if ((msglen--recmsg(sockudp, &msg)) < 0)1

printf("FRONT internet: receive error\n");
exit(1);

msgllmsglen] =NULL, /*turn message into string ~

printf(tYFRONT internet: received => 11%stk\n' msg);

/* Determines which message was received *

msgtype = ext-msg-type(msg),
switch (msgtype){I

case STAT-USQRY:sen&.msgjin(msg,srrt-);
break;

case JOINREQST:
case INITPARAM:send-msgjin(msg~joinp),

break;
case TOKENACKN:

if (get...sr-nbr(msg) == expectsrnbr)l
queue-counter--;
dequeue(msgqueue);

break,

default: exit(1);

free(msg),

108

* SOCKET INTERFACE AUXILIARY FUNCTIONS

* The following functions are available to be used: *

int createUDP(ushort port);
* int createUN(char *path);

* mt connectUN(char *server path);

int readmsg(int fd, char **ptr, char *eom);
* int writemsg(int fd, char *ptr, int n);

void senmsg(char *msg, int n, char *IPaddr, u_short port);
* int recmsg(int fd, char **str,);

* Refer to the function header comments for detailed info.

* Other functions in this file are used internally, and should

* not be used directly.

"* Writen by:Fernando J. Pires *

"* Last revision: 18 Feb 1993

createUDP - establish an UDP socket for a server

int createUDP(port)

u-short *port;

struct sockaddrinsin;/* Internet endpoint address */

mt sockfd;/* socket descriptor */

int sinlen;

bzero((char*)&sinsizeof(sin));/* clear address structure */
sin.sin_family = AF_INET;

109

sin.sin-addr.s-addr = htonl(INADDR...ANY);
sin.sin-port = *port;

/* Open the socket ~

if ((sockfd = socket(PFJINET, SOCK_OGRAM, 0)) < 0){
printfQ\%createUDP: can't open internet socket \n");
exit(1);

/* Bind the socket *

sinlen = sizeof(sin);
if (bind(sockfd, (struct sockaddr *) &sin, sinlen)< O){

printf('%\.createUDP: can't bind local address \n");
exit(1); I

if (getsockname(sockfd. (struct sockaddr *) &sin, &sinlen)< 0){
printf('%xcreateUDP: can't bind local address \n");
exit(1); I

*port = sin.sin...port;

return sockfd;

createUN - establish an Unix Domain socket for a server

int createUN(path)
char* path;

struct sockaddr-unsunx;/* Internet endpoint address ~
int sockfd;/* socket descriptor */
int sunlen;/* Addr struct length */

bzero((char*)&sunx,sizeof(sunx));/* clear address structure ~
sunx.sun-family = AFUNIX;
strcpy(sunx.sun-path. path);
sunlen = strlen(sunx .sun...path)+sizeof(sunx .sunjfamily);

110

/* Open the socket */

if ((sockfd = socket(AFUNIX, SOCKSTREAM, 0)) < 0)
printf('xcreateUN: can't open unix socket \n");

exit(I);

/* Bind the socket */

unlink(path);/* in case it was left open by a previous call */

if (bind(sockfd, (struct sockaddr *) &sunx, sunlen)< 0){
printf('%createUN: can't bind local path \n");

exit(l); }

return sockfd;
}

connectUN - establish an Unix Domain socket for a client

int connectUN(serverpath)
char* server-path;

struct sockaddrunsunx;/* Internet endpoint address */
int sockfd;/* socket descriptor *l
int sunlen;/* Addr struct length */

bzero((char*)&sunx,sizeof(sunx));/* clear address structure */
sunx.sunjfamily = AFUNIX;
strcpy(sunx.sun-path, server-path);
sunlen = strlen(sunx.sun-path)+sizeof(sunx.sun-family),

/* Open the socket */

if ((sockfd = socket(AFUNIX, SOCKSTREAM. 0)) < 0){
printf('%connectUN: can't open unix socket Nn");

111

exit(l). }

/* Connect to the server ~

if (connect(sockfd, (struct sockaddr *) &sunx, sunlen)< 0){
printf('%connectUN: can't connect to unix server W'");
exit(1), }

return sockfd;

readn - Read "n" bytes from a descriptor
Use in place of reado when fd is a stream socket

mnt readn(fd,ptr,nbytes)
register intfd;
register char*ptr;
register intnbytes;

int nieft, nread;

nieft = nbytes;
while (nieft > 0){

nread = read(fd,ptr~nleft);
if (nread < 0)

return(nread);
else if(nread == 0)

break;

nleft -= nread;

ptr += nread;

return(nbytes-nleft);

112

writen - Write "n" bytes to a descriptor

Use in place of witeo when fd is a stream socket

int writen(fdptr. nbytes)

register intfd;

register char*ptr;

register intnbytes;

mt nleft. nwriten;

nleft = nbytes;

while (nleft > 0) {
nwriten = write(fd,ptr,nleft);

if (nwriten < 0)

return(nwriten);
nleft -= nwriten,

ptr += nwriten;
I

return(nbytes-nleft);

readmsg - Read a complete message from a descriptor

Use in place of read() when fd is a stream socket

The message is assumed to be terminated by 'eom'.

The function allocates the necessary space to build

a non-Null terminated string '*str', plus space for

an extra NULL (to be used by the calling function).
The calling function must free the allocated space,
when it is no longer necessary.

Sample call sequence:

char *str;

len = readmsg(fd, &str, "#");

str[len] = NULL,

113

free(str),

int readmsg(fd, ptr, eom)
register intfd,
register char**ptr,
register char*eom,
{

int n, rc, maxlen;
char c, msghead[HEADERSIZE+ 1], *trap;

/* get msg size */
tmp = msghead;

do {
if ((rc = read(fd, &c, 1)) != 1)

return(O);
*tmp++ = c;

}while(c != '-');

--tmp = NULL; / substitute NULL for '-' to end string */
if ((maxlen = atoi(msghead)) == 0)

return(O);
/* allocate space for message and extra NULL*/
*ptr = trap = CALLOC(maxlen+1,char);

/* get message character by character */
for (n = 1, n <= maxlen; n++) {

if ((rc = read(fd, &c, 1)) == 1) {
*trap++ = C;

if (c == *eom)

break; * End of message */
else if (rc == 0)

if (n == 1){
free(*ptr),

return(O); * EOF, no data read */
}else

break; /* EOF, data was read */
/* Note: the calling function has to free

114

the allocated space */
I else{

free(*ptr);
return(-1); /* error */

}
}

return(n);

writemsg - Writes a complete message 'ptr' of size 'n' to a
file descriptor 'fd'. It appends an header that

contains the size of the original message, plus a '

as a separator. This header is to be processed by
readmsgo.

It returns the number of characters from
the original message that were actually transmitted.
The original message is not changed.

Sample call:

n = writemsg(fd, str, strlen(str));

int writemsg(fd, ptr, n)

register intfd;
register char*ptr;

register intn;
{

int nwrite, len;

char header[HEADERSIZE+ I], *msg;

if (n > (len = strlen(ptr)))

n = len;
sprintf(header,"%d-",n);
msg = CALLOC(n+strlen(header)+I,char);

strcpy(msg,header);

strncat(msg,ptr,n);

115

nwrite = writen(fd,msg,strlen(msg));
free(msg),
return(nw-rite-strlen(header));

senmsg - sends an external message 'msg' of size'n
to the specified [P destination <IPaddr, port>.
An header with the value of the size of the
message, and a '-' as separator, is appended
to the message. This header is to be processed
by recmsgo.
The original message is not disturbed.
Sample call:

senmsg(msg, n, IWaddr, port);

void senmsg(msg, n, IWaddr, port)
char *msg;
int n;
char *m~add&;
u-shortport;

struct sockaddr-intarget-addr;
struct hostent*phe;
struct ioveciov[2];
int sockfd, len;
u-short outport;
char header[HEADERSLZEII;

/* get the target UDP socket description */
bzero((cha~r*)&target..addr~sizeof(target~add&));/* clear address structure ~
target...addr.sin-family = AF_[NET,
target...addr.sin-port = port.

if ((target..addr.sin-addr.s-addr = inet-addr(IPaddr))==INADDR_NONE)
if (phe = gethostbyname(IPaddr))

116

bcopy(phe->h-addr, (char*)&targetaddr.sin_addr, phe->h_length);
else I

printf("senmsg: can't get II%sII host entryn". IPadI);
exit(l);

}

/* set a connection to the destination */

outport = htons(O);

sockfd = createUDP(&outport), /* request an arbitrary socket */
connect(sockfd, (struct sockaddr*) &target-addr, sizeof(targetaddr));

/* assemble a scattered message including the msg size */
if (n > (len = strlen(msg)))

n = len;
iov[O].iov_base = header;
sprintf(header,"%d-",n);
iov[O].iov_len = strlen(header);
iov[1].iov_base = msg;
iov[1].iov_len = n;

/* send message *1
if (writev(sockfd, &iov[O], 2) (strlen(header)+n)){

printf("senmsg: write error on socket \n");
exit(1); }

close(sockfd);
}

recmsg - reads an external message 'msg' at the
specified IP socket.
The message is atomically received, and is striped
of the header (as created by senmsgO).
The function allocates the necessary space to build

a non-Null terminated string '*str', plus space for
an extra NULL (to be used by the calling function).
The calling function must free the allocated space,

117

when it is no longer necessary.
The function returns the message size, and -1 if
an invalid message is received.
Sample call sequence:

char *sir;

ten = recmsg(fd, &str);
str[len] = NULL;

free(str);

int recmsg(fd, str)
register intfd;
register char**str;
{

char *msghead, *tmp, *msgbuf, buf[HEADERSIZE+I1];
int msglen, recvlen, mien;

/* retrieve the header (the message is not removed) */
if ((msglen = recv(fd, buf, HEADERSIZE, MSGPEEK)) <0){

printf("recmsg: header errorn");
exit(1); }

buf[HEADERSIZE] =NULL;
msghead = strtok(buf, "-");
if ((msglen = atoi(msghead)) == 0)

return(0);
/* allocate space for entire message */
msgbuf = CALLOC(msglen + HEADERSIZE + 1, char);

/* get entire message */
if ((recvlen = recv(fd, msgbuf, msglen+HEADERSTZE, 0)) <0){

printf("recmsg: message error\n");
free(msgbuf);
return(- 1);

}

msgbuffrecvlen] =NULL;

118

/* extract message info and discard header *
tmp = strtok(msgbuf,"-");
tmp = strtok(NULL."'-");
mien = strien(tmp),

*sr= CALLOC(mlen + 1, char);
strcpy(* str~tmp).
free(msgbuf);
return(mlen);

119

* MESSAGE HANDLING AUXILIARY FUNCTIONS *

* The following functions are available to be used: *

* link *str2list(char *str, char *token); *

* char *list2str(link *list, char *header, char* htok, char *ltok); *

* void removelist(link *list);
* bat listsize(link *list);
* int getfromlist(link *list, char **str, int n);
* char *int_2_ext(char *inmsg, int snrnbr, char *orig);
* int get-sr-nbr(char *msg);
* int in_msg._type(char *inmsg); *

* ht ext-msgtype(char *extmsg);
* char *get-target(char *str);

* char *get originator(char *str); *

* Refer to the function header comments for detailed info. *

* Other functions in this file are used internally, and should
* not be used directly.

"* Writen by:Fernando J. Pires
"* Last revision:8 Mar 1993

struct link{
char*data;
struct link*next;

1;
typedef struct linklink;

str2list - parse a string, creating a list of nodes, each
of which points to a field of the original string.

120

The fields are originally separated by token.

In the original string, tokens are replaced by NULL

After the list is no longer needed, removelist0

must be called for garbage collection.

link* str2list(str. token)

char *str;

char *token,
I

link *msglst, *imp;

char *ptr;

tmp = msglst = CALLOC(1,link);

tmp->data = ptr = strtok(str,token);
while (ptr = strtok(NUJLL,token)){

tmp->next = CALLOC(llink);

tmp = tmp->next;

tmp->data = ptr;
}

return(msglst);

list2str - assembles a string from a list generated by

str2listo and appends it to the string 'header'.

'htok' is inserted after the header. 'Itok' is

inserted in between each new field and a NULL is

added at the end.

Notes:
'header' has to be dynamically allocated

(it cannot be static data). The best way to

initialize it is to use "header = CALLOC(l.char);"

If the list is empty the header is returned

without changes.

The resulting message has to be deallocated

with a freeo call when it is no longer needed.

121

char* list2str(list, header, htck, lItok)

link *list;

char *header;

char *htok;

char *ltok;

hat len = 0;

link *ptr = list;

if (list) {

while (ptr){ /* determine size of string to be used */

len += strlen(ptr->data)+ l; /* Reserve space for

token and NULL */

ptr = ptr->next;

header = REALLOC(header,strlen(header)+2+len,char);

if (htok)

strcat(header,htok); /* insert htok */

if (len) {
while (list) { /* assemble the string */

strcat(header,list->data);
list = list->next;

if (list && Itok) /*add Itok except after

last field*/

strcat(header,ltok);

}I

return(header);

removelist - Deallocates the space used by str2listo to
generate a list. This function must be called for

every list, once it is no longer needed.

void removelist(list)

link *list,

122

if (list->next)
removelist(list->next);
free(list);

getfromlist - Get the nth field from list. Upon execution 'str'
points to the nth field.
Returns n if the call is successful, or zero if the
list has less than n fields.

int getfromlist(list, str, n)
link *list;
char **str;

int n;
{

int p;

if (list == NULL)

return(O);

if (n == 1){

*str= list->data;

return(n);
}else{

p = getfromlist(list->next,str,n- 1);
if (p)

return(n);
else

return(O);

listsize - Return the number of elements of a list

123

Returns n > 0 for a non-empty list, and 0 otherwise.

int listsize(list)
link *list.
{

int n = 0;

while (list){
list = list->next;

}

return(n);

int 2 ext - convert 'inmsg' into an external message.
'srnbr' is converted to a string and is used as
a prefix to 'inmsg'. 'orig' is the address of the
local element and it is inserted after 'snrb'.
An NL character is used to separate the fields.
The original 'inmsg' is not modified.
To convert an internal message to external format use:

extmsg = int_2_ext(inmsg, srnbr, orig);

free(extmsg);

If the serial number is not relevant set 'snbr' to 0.

char *int_2_ext(inmsg, srnbr, orig)
char *inmsg;
int srnbr;
char *orig;
{

int msgsize;
char temp[HEADERSIZE];
char *extmsg;

124

msgsize = strlen(inmsg),
sprintf(temp."%d\n",srnbr),

extmsg = CALLOC(strlen(temp)+strlen(orig)+msgsize+2, char);

strcpy(extmsg,temp);

strcat(extmsg.orig);
strcat(extmsg,'\n');

strcat(ex*msginmsg);
return(extmsg);

get-sr-nbr - extracts the serial number of a message that
was previously retreived from the queue, or

received at the external port.

The original message is not disturbed.
The function returns the serial number, or -1

if an error occurs.

int get-sr -nbr(msg)

char *msg;
{

char *tmp, *srnbrstr;

link *list;

/* make a copy of the message */

tmp = CALLOC(strlen(msg)+1, char);

strcpy(tmp, msg);

/* break the message into a list of fields */

list = str2list(tmp, "\,n");
if (gerfromlist(list, &srnbrstr, 1) != I){ /* get 1st field */

printf("get sr nbr errorhn");

removelist(list);

free(tmp);

return(- 1);

125

removelis t(list),
free(tmp),
return(atoi(srnbrstr));

msgjtype - returns the integer value correponding to
the type of the string 'type', as defined in gmp.h

int msgjtype(type)
char *type;

if (strcmp(type,"tokentokn") == 0)
retum(TOKENTOKN);

else if (strcmp(type'"tokenpool") ==0)

retum(TOKENPOOL);
else if (strcmp(type,"tokenackn') ==0)

return(TOKENACKN);
else if (strcmp(type,"statusqry") 0)

return(STATUSQRY);
else if (strcmp(type,"statusrpt-) ==0)

retumn(STATUSRPT);
else if (strcmp(type,"statustbl") 0)

return(STATUSTBL);
else if (strcmp(type,"initparani") == 0)

return(INITPARAM);
else if (strcmp(type,"joinreqst") ==0)

return(JOMNEQST);
else if (strcmp(type,"updstatus") ==0)

return(IJPDSTATUS);
else if (strcmp(type, groupview") ==0)

return(GROUPVIEW);
else if (strcmp(type,"updatview") ==0)

retum(UPDATVIEW);
else if (strcmp(type."sndinipar") == 0)

retum(SNDINIPAR);

126

else if (strcmp(type,"inittoken") == 0)
return(INITTOKEN);

else if (strcmp(type,"viewreqst") == 0)
return(VIEWREQST);

else if (strcmp(type,"statreqst") == 0)
return(STATREQST);

else if (strcmp(type,'tokpreqst') ==0)

return(TOKPREQST);
else if (s trcmp (type, "initgview'D= 0)

return(INITG VIEW),
else if (strcmp(type,'inittable") ==0)

return(INMTABLE);
else if (strcmp(typeinittpool") ==0)

return(INrlTPOOL);
else if (strcmp(type,"timeout_'D == 0)

retum(TIMEOUTJ-;
else if (strcmp(type,"starttimr") == 0)

return(STARTTTR);
else if (strcmp(type,"delttoken"') == 0)

return(DELTTOKEN);
else

return(INVALDMSG);

in-msg.type - extracts the type field of a message that
was previously received at the internal port.
The original message is not disturbed.
The function returns an integer whose value is
defined in 'gmp.h', or -i if an error occurs.

mnt in-msg-type(inmsg)
* char *inmsg;

* mt msgtype;

char *tmp, *type;

127

link *list.

/* make a copy of the message */

tmp = CALLOC(strlen(inmsg)+l, char);

strcpy(tmp, inmsg);

/* break the message into a list of fields *1
list = str2list(tmp, "\n#");
if (getfromlist(list, &type, 1) !=){ /* get 1st field */

printf("in-msgjtype errorn");

removelist(list);

free(tmp);

return(- I);

msgtype = msg__type(type);

removelist(list);

free(tmp);
return(msgtype);

extmsg.type - extracts the type field of a message that
was previously received at the external port.
The original message is not disturbed.

The function returns an integer whose value is

defined in 'gmp.h', or -I if an error occurs.

int extmsgjtype(extmsg)

char *extmsg;

int msgtype;

char *tmp, *type;

link *list;

/* make a copy of the message *1

128

tmp = CALLOC(strlen(extmsg)+l, char);

strcpy(tmp. extmsg);

/* break the message into a list of fields */

list = str2list(tmp, "\n#");

if (getfromlist(list, &type, 3) != 3){ /* get 2nd field */

prinff("ext-msg.type error\n");
removelist(list);

free(tmp);

return(- 1);

msgtype = msgtype(type);
removelist(list);

free(tmp);
return(msgtype);

get-target - extracts the destination field of an

internal message.

The original message is not disturbed. The result

is stored on a dynamic array 'nbr', that has to

be deallocated before reusing.

Sample call:

char *nbr;

nbr = get-target(msg);

free(nbr);

char *get-target(str)

char *sir;
{

char *nbr, *nbrtmp, *tmp;
link *list;

129

tmap = CALLOC(strlen(str)+l. char);
strcpy(tmp.str);
list = str2list(tmp,'"n ");

if (getfromlist(list, &nbrtmp. 2) != 2){
printf("get-target errorn");exit(- 1); }

nbr = CALLOC(strlen(nbrtmp)+l. char);
strcpy(nbr.nbrtmp);
removelist(list);
free(tmp);
return (nbr);

get-originator - extracts the originator field from the
header of an external message.
The original message is not disturbed. The result
is stored on a dynamic array 'nbr', that has to
be deallocated before reusing.
Sample call:

char *nbr;

nbr = get-originator(msg);

free(nbr);

char *get-originator(str)
char *str;
{

char *nbr, *tmp;
link *list;

tmp = CALLOC(strlen(str)+1, char);

strcpy(tmp,str);
list = str2list(tmp,".n ");

if (getfromlist(list. &nbr, 2) != 2){

130

printf("get-originator error\n'");exit(- 1),)
remove lis t(list);
free(tmp),
return (nbr);

131

* QUEUE HANDLING AUXILIARY FUNCTIONS FOR FIFO PROCESSES *

* The following functions are available to be used: *

* void enqueue(queue *quptr, char *msg);
* void dequeue(queue *quptr);
* void get-queue-head(queue *quptr, char **msg);
* void flush-queue(queue *quptr);
* void sendack(char *msg, char *orig, char *dest);
* void send-msg&back(char *msg, char *dest); 1
* void send-msgjfront(char *msg, char *dest); *
* void send-msg._in(char *msg, char *dest); *

* Refer to the function header comments for detailed info. *

* Some functions in this file need socutil.c and msgutil.c

* Writen by:Fernando J. Pires
* Last revision: 1 Feb 1993

struct node{
char *data;
struct node *previous;
struct node *next;

I;

typedef struct node node;

struct queue{
node *tail;
node *head;

1;
typedef struct queue queue;

132

enqueue - inserts the external message 'msg' at the
tail of the queue 'quptr'.

The original 'msg' is not modified.
~quptr' must be created before the first call to

enqueueo. To create a queue use:

queue qu; / declaration /
queue * quptr = &qu, / initialize pointer/
qu.tail = qu.head = NULL, / empty queue/

enqueue(quptr, msg); / function call/

void enqueue(quptr, msg)
queue *quptr;
char *msg;

node *ptfrlmnt;

ptrlmnt = CALLOC(l,node);
ptrimnt->data = CALLOC(strlen(msg)+l1 char);
strcpy(ptrlmnt->data, msg);
if (quptr->tail == NULL){

quptr->tail = ptrlmnt;
quptr->head = ptrlmnt;
qjptr->tail->preN'ious = NULL;
quptr->tail->next = NULL;

else{I
quptr->tail->previous = ptrlmnt;
ptrlmnt->next = quptr->tail;
ptrnImnt- >previous = NULL;
quptr->tail = ptrimnt;

133

dequeue - remove a msg from the head of the queue 'quptr'.
Sample call:

dequeue(quptr),

void dequeue(quptr)
queue *qupw,;

node *tmp,

if (quptr->head ! = NULL)(
tmp = quptr->head;
quptr->head = tmp->previous;
if (quptr->head == NULL)

quptr->tail = NULL;
else

quptr- >head- >next = NULL;

free(tmp->data);

free(tmp);

get-queue-head - returns a pointer to the message at
the head of the queue.

Sample call:

get-queue...head(quptrr &mnsg);

void get-queue-..head(quptr, msg)
queue*quptr;
char **msg;

if (quptr->head)
* msg = quptr->head->data;

134

else
*msg = NULL;

flush-queue - remove all nodes of 'quptr' from memory.
All used memory is deallocated.
Iquptr' remains a valid empty queue and can be
reused by enqueueO.

void flush-queue(quptr)
queue*quptr;

node *tmp;

while (quptr->head != NULL){
tmp = quptr->head->previous;
free(quptr->head->data);

free(quptr->head);
quptr->head = tmp;

}

quptr->tail = NULL;

sendmsg&front - sends an external message 'msg' to the
front port of the specified IP destination 'dest'.
'dest' is a string with element address format.
The original message is not disturbed.
Sample call:

send-msg.front(msg, dest);

void sendmsgfront(msg, dest)
char *msg, *dest;

135

link * list,
char *IPadd& *frontport, *tmp,
u_shortport.

/* make a copy of the address *
tmp = CALLOC(strlen(dest)+l,char);

list = str2list(dest, 1 ");'
if (getfromlist(list. &EPaddr, 1)I=1

printf("sen-msgjfront: EP' address error\n"),exit(- 1);
if (getfromlist(list, &frontport, 2) !)

printf("sen-msgjfront: front port error\n");exit(- 1);
port = htons((u~short)atoi(frontport)); /* convert port # to network format ~

senmsg(msg, strlen(msg), IMaddr, port);

removelist(list);
free(frontport);
free(EPaddr);
free(tmp),

send-msg-back - sends an external message 'msg' to the
back port of the specified IP destination 'dest'.
'dest' is a string with element address format.

The original message is not disturbed.
Sample call:

send-msg...back(msg, dest);

void send-msg-back(msg, dest)
char *msg, *dest;

link * list;
char *IPaddr, *backport, *tmp;

136

u_shortport,

/* make a copy of the address */

tmp = CALLOC(strlen(dest)+lchar).

list = str2list(dest, ";").
if (getfromlist(list, &IPaddr, 1) 1)

prinff("sen-msg&back: IP address error\n");exit(-l);
if (getfromlist(list, &backport, 3) != 3){

printf("sen-msg-back: back port error\n");exit(- 1);
port = htons((ushort)atoi(backport)); /* convert port # to network format */

senmsg(msg, strlen(msg), IPaddr, port);

removelist(list);

free(backport);

free(IPaddr);

free(tmp);

send ack - assembles an ack as a reponse to an external
message 'msg' and sends it to the
front port of the specified IP destination 'dest'.

'dest' is a string with element address format.
The original message is not disturbed.

Sample call:

send ack(msg, dest);

void sendack(msg, orig, dest)

char *msg, *orig, *dest;
{

link *list;

char *ackmsg, *tmp;

/* make a copy of the msg *1

137

tmp = CALLOC(strlen(msg)+1,char),

/* assemble ack message *
list = str2list(tmp, "\n");
if (getfromlist(list, &ackmsg, 1) != 1){

printf("send-ack: serial number in error\ni");exit(- 1);}
ackmsg = REALLOC(ackmsg~strLen(ack~msg)+strlen(orig)+13,char);

strcat(ackmsg,"\n');
strcat(ackmsg,orig);
strcat(ackmsg,'\nrtokenackn#');

send_msgj'ront(acknisg, dest);

removelist(list);
free(ackmsg);
free(tmp);

send-msgjin - sends an external message *msg' to the
the specified unix socket destination 'dest'.
'dest' is a string with a path name.
The message is converted to internal format, before
transmission. The original message string is not
disturbed.
Sample call:

send-msg.in(msg, dest);

void send_msg~jn(msg, dest)
char *msg, *dest;

Link *list;
int msglen, sockfd;
char *header, *tmp, *inmsg;

138

/* make a copy of the message ~

msglen = strlen(msg);
tmp = CALLOC(msgien+1.char);
strcpy(tmp, msg);

/* discard external header *
list = st~r2list(tmp, "\.n");
if (getfromlist(list, &header, 3) != 3)1

prinff(*"sen-msgjln: error\n "), exit(- 1);
inmsg = msg + (header - tmp);

/* open and connect socket to server ~
sockfd = connectUN(dest);

I* send msg to socket */

msglen = strlen(inmsg);
if ((writemsg(sockfd, inrnsg, msglen)) != msglen)

printf("send-msgjln: write error on socket~n");
exit(1); I

removelist(list);
free(header);
free(tmnp);
close(sockfd);

139

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

2. Dudley Knox Library Code 52 2
Naval Postgraduate School
Monterey, CA 93943

3. Chairman Code EC
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943

4. Professor Shridhar B. Shukla Code EC/Sh 2
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943

5. Professor Amr Zaky Code CS/Za
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943

6. Direcco do Servigo de Instruglo e Treino 4
AdministraqAo Central de Marinha,
Praga do Com~rcio
1188 LISBOA CODEX
PORTUGAL

140

